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KEYWORDS Summary Healthy river conditions through optimal thermal regime controls water qual-
Modelling; ity as well as the availability and distribution of fish habitat. A multivariate and geosta-
Temperature; tistical approach was developed to estimate maximum stream temperatures at a large
River; basin scale. The methodology relies on the construction of a physiographical space using
Multivariate; characteristics of gauging stations by testing two multivariate methods: principal com-
Geostatistical; ponents analysis (PCA) and canonical correlation analysis (CCA). Within the physiograph-
Kriging ical space, a geostatistical technique called ordinary kriging was then used to

interpolate stream temperatures. Data from 12 temperature monitoring stations during
July 1996 and July 1997 were used to estimate monthly maximum temperature. Results
from the proposed approach were evaluated by comparing kriging performance obtained
using both multivariate methods. Cross-validation technique has been performed on
both approaches and satisfactory results were obtained. Kriging in the CCA physiograph-
ical space leads to better results because this approach seems more adapted to link
physiographical information with specific water temperature. In addition, CCA requires
less physiographical information than PCA (i.e. 10 metrics for PCA vs 8 metrics for
CCA) to provide more satisfactory results (up to 15% decrease in RMSEr). In physiograph-
ical space, the gauging stations were found to cluster, potentially providing information
to improve the accuracy of interpolation in that space. An example is provided to illus-
trate how to estimate one of the stream temperature properties at ungauged stations
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using the PCA algorithm. The relevance of the results regarding the quality of fish hab-
itats of the Moisie river is discussed.
© 2008 Elsevier B.V. All rights reserved.

Introduction me, 1993; Mohseni et al., 1998). Statistical/stochastic mod-

In recent years, global climate change is being considered as
a potential threat for several fish species (Sinokrot et al.,
1995; Eaton and Scheller, 1996; Crozier and Zabel, 2006).
The integrity of many physical and bio-chemical character-
istics of an ecosystem is mainly controlled by temperature.
The thermal regime of rivers controls water quality as well
as the availability and distribution of fish habitat (Caissie,
2006). During warm months, unusually high stream temper-
ature can occur naturally or as a result of human activities.
Such extreme events are often linked to flow reduction, in-
creased incident radiation and high air temperature (Sinok-
rot and Gulliver, 2000). Deforestation (Johnson and Jones,
2000; Chen et al., 1998) has often been identified as having
a negative impact on stream temperature (e.g. Holtby,
1988; St-Hilaire et al., 2000).

A modified thermal regime can affect a number of poiki-
lotherm fish such as Atlantic salmon (Salmo salar). For
example, parr can be submitted to a thermal sublethal
stress when water temperature exceeds 23 °C through inter-
rupted mRNA induction, which is an important process in
protein synthesis (Lund et al., 2002). Hodgson and Quinn
(2002) found that Sockeye salmon (Oncorhynchus nerka)
spawning can be interrupted or delayed when water tem-
perature rises above a threshold of 19 °C in northwestern
USA. When this threshold is reached, adults start to seek
thermal refugia. Therefore, improving our understanding
of the thermal regime of rivers and our capacity to predict
and simulate high temperatures by developing more accu-
rate and flexible models applicable across watersheds are
essential steps to identify the best management framework
for aquatic resources and fisheries managers.

Many models have been developed and used to estimate
stream temperature. Two broad categories are usually iden-
tified: (i) deterministic or physical models (e.g. Caissie
et al., 2007; St-Hilaire et al., 2003a; Gu and Li, 2002) and
(ii) statistical/stochastic models (e.g. Caissie et al., 1998;
Mohseni et al., 1998; Ahmadi-Nedushan et al., 2007). Deter-
ministic models use a conceptual approach which is based
on the thermal exchange between atmosphere, the body
of water and sometimes the river bed. Meteorological
parameters such as air temperature, wind velocity and solar
radiation are used as inputs to calculate energy budget
equations and are also important to predict water tempera-
ture variations. For this reason, deterministic models are
quite flexible in terms of input parameters modification,
but also quite demanding in terms of model development
and data requirement. As an alternative, statistical/sto-
chastic approaches are based on a mathematical relation-
ship between water temperature and independent
variables such as air temperature and flow. This second
model category requires fewer input data than determinis-
tic models and model development can be relatively simple
(e.g. linear or nonlinear regressions; Stefan and Preud’hom-

els are most often developed for a specific point or station
on a river. As such, they cannot easily be transferred to an-
other point in the river or another stream. Recent develop-
ment of low cost temperature recorders makes it possible to
sample water temperature at many locations with relatively
good accuracy and high frequency.

Previous work on abiotic variables, such as water tem-
perature, have attempted to make use of a number of inde-
pendent physiographical/climatic variables via statistical
analyses that explained the spatial and temporal variability
(Collings, 1973; Mosley, 1982; Miyazawa et al., 1982; Haw-
kins et al., 1997; Arscott et al., 2001; Scott et al., 2002).
Water temperature has also been characterized by spatial
correlation (Peterson and Sickbert, 2006). One approach
for modelling this type of spatial correlation is kriging (Isa-
aks and Srivastava, 1989). Ordinary kriging, a very popular
geostatistical approach, consists of quantifying the spatial
correlation structure between stations as a function of sep-
aration distances. The spatial interpolation at any point
uses a weighted combination of neighbours. For example,
Gardner et al. (2003) have considered a set of temperature
recorders located throughout of Beaverkill Watershed in
southwestern New York to estimate river temperature at
ungauged points on the same system. They used kriging to
interpolate directly in a physical space by considering three
metrics to calculate separation distances using a total of 72
temperature loggers. This resulted in a one-dimensional
model of water temperature as a function of one of these
three metrics: the shortest path between loggers, distances
calculated along the stream network (river kilometer) and
distances weighted by stream order.

The aim of the present study is to expand from the work
of Gardner et al. (2003) and include a larger number of
metrics to interpolate water temperature. In contrast with
previous studies, a relatively sparse network of loggers is
placed on a large scale hydrographical system and a phys-
iographical space rather than a geographical interpolation
space has been created by using multivariate approaches
(Manly, 2004). This concept, first developed by Chokmani
and Ouarda (2004) for flood quantiles, consists in combin-
ing physiographical and climatic information from drainage
basin using principal component analysis (PCA) or canonical
correlation analysis (CCA) to define a multivariate orthogo-
nal interpolation space and then use ordinary kriging to
interpolate water temperature in the newly created princi-
pal components (PCA) or canonical correlation (CCA)
space. Therefore, the objectives of this study are: (1) to
elaborate a reliable spatial stream temperature interpola-
tion model on a large scale basin using a multivariate geo-
statistical approach. (2) To compare results between two
different multivariate approaches (PCA and CCA) to deter-
mine which is the most suitable for water resources man-
agers in predicting stream temperature based on model
performance.
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Data and study site

Thermographs were deployed on the Moisie and Ste-Margue-
rite rivers drainage basins on Québec North Shore, Canada
(Fig. 1), which are respectively large drainage basins of
19197 km? and 6711 km?. The majority of the loggers were
deployed on the drainage basin of the Moisie River which
discharges a mean annual flow of 466 m®s~" into the St-
Lawrence Estuary. It drains Lake Menistouc, which is lo-
cated in the upper part of the drainage basin and then runs
for 363 km. Main triburaries are Carheil, Nipissis and Aux Pé-
cans rivers. In the province of Québec (Canada) the Moisie
River is home to the most important spawning grounds for
Atlantic salmon. Moreover, it is considered by anglers as
one of the most important salmon rivers in the province be-
cause of the high average weight of individual adult salmon.

A total of 20 temperature monitoring stations were
established by Hydro-Québec, the main provincial hydro-
electric authority, during the period of 1989—1998. Daily
temperatures were calculated from hourly observations
provided by Hydro-Québec. As a test case for the methodol-
ogy, we decided to focus on observations periods corre-
sponding to warmer months of the year. There were a
number of missing values during the first part of the obser-
vation period (1989—1992) and for this reason we decided to
focus on the second part of the observation period (1992—
1998). Two years with the greatest number of concomitant
time series for a minimum of 10 stations were selected for
this study (1996 and 1997). Descriptive statistics used in
the models are: monthly maximums of daily temperatures
and maximum daily range, the latter being only used in
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Figure 1

Tributairies of the
Ste-Marguerite River

CCA (see Section ‘Kriging in CCA physiographical space’).
The focus on maxima stems from the potential interest of
having a method that can be useful in defining areas of ther-
mal stress or thermal refugia. Twelve stations with monthly
maximum temperatures of July 1996 and July 1997 have
been selected as test cases for modelling in multivariate
space. Table 1 shows the station name with their associated
monthly maximum temperatures for both time periods.

By extracting a large number of metrics, more informa-
tion is known on the watershed. Multiple combinations of
physiographical variables can then be used to influence
the spatial variation of the thermal regime and to interpo-
late water temperatures. The choice of those variables is
simply based on data availability and their potential to influ-
ence stream temperature across the watershed. In the pres-
ent study, and in accordance with watershed management
terminology, we identified geographical metrics such as
the latitude, the longitude and the azimuth, physical vari-
ables such as the drainage area and the mean slope, and
hydrographical variables such as the river kilometer and
the stream order. Thus, a total of 18 physiographical vari-
ables characterizing each station were estimated using a
Geographic Information System. They are reported in Table
2.

Statistical methods

In this study, the interpolation of stream temperature is
based on the use of the basins coordinates in a physiograph-
ical space rather than a geographical space. Stream temper-
atures in the geographical space may change dramatically

Northern tributairies
of the Moisie River
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Location and map of the Moisie and Ste-Marguerite rivers drainage basins with temperature monitoring stations grouped

into three broad geographical regions. X marks indicate locations of ungauged stations.
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Table 1 Station names and their associated broad geographical regions and monthly maximum temperatures. Data used to
construct kriged maps of July 1996 and 1997.

July 1996 July 1997

Station name Geographical region T (°C) Station name Geographical region T (°C)
TCAR_0543 North Moisie 18.36 TCAR_0544 North Moisie 18.35
TPEK_0352 North Moisie 17.50 TCAR_0543 North Moisie 18.67
TPEK_0350 North Moisie 18.55 TPEK_0352 North Moisie 17.14
TPEK_0007 North Moisie 18.29 TPEK_0350 North Moisie 17.99
TMOI_0008 North Moisie 18.06 TPEK_0007 North Moisie 18.42
TMOI_0509 South Moisie 17.19 TMOI_0008 North Moaisie 18.50
TMOI_0507 South Moisie 16.58 TMOI_0509 South Moisie 17.72
TMOI_0555 South Moisie 17.63 TMOI_0507 South Moisie 16.41
TNIP_0554 South Moisie 17.49 TNIP_0554 South Moisie 16.88
TSMA_0586 Ste-Marguerite 17.03 TSMA_0586 Ste-Marguerite 17.43
SMA_0586 Ste-Marguerite 16.99 SMA_0586 Ste-Marguerite 17.42
SMA_0346 Ste-Marguerite 17.22 TSMA_0588 Ste-Marguerite 17.06
Table 2 Physiographical variables characterizing each station estimated using GIS.

Metrics Units Notation
Latitude UTM LAT
Longitude UTM LONG
Drainage area km? DA
Distance to the closest tributary from station m CT
Distance to the closest lake from station m CL

Area of the closest lake m? ACL
Mean stream azimut ° MSA
Mean stream azimut of all upstream tributaries ° MSAT
Azimut between station and closest lake ° ASL
Altitude at the station m A
Maximum altitude of drainage basin m MAXA
Mean altitude of the drainage basin m MEANA
Mean slope of the drainage basin % MS
Local slope at the station % S
Stream order SO
River kilometer km RK
Forest cover on drainage basin % FC
Percentage of area covered by lakes and marches % PLM

over adjacent drainage basins. In fact, while stream tem-
peratures are discontinuous in the geographical space, they
can be regarded as continuous variables in the physiograph-
ical space, thereby permitting the use of interpolation tech-
niques. Different approaches are possible to construct the
physiographical space. Chokmani and Ouarda (2004) pro-
posed two multivariate approaches called principal compo-
nent analysis (PCA) and canonical correlation analysis (CCA)
to realize a study on regional flood frequency estimation.
They used both methods respectively to simplify complex
data sets as well as describing relationship of dependence
existing between hydrological and physiographical vari-
ables. These approaches had never been tested on abiotic
habitat variables such as water temperature. Therefore this
study focuses on the feasibility of using PCA and CCA to
establish a multivariate coordinate system.

Principal component analysis (PCA) is a statistical tech-
nique that linearly transforms an original set of variables

into a substantially smaller set of uncorrelated (orthogonal)
variates, called principal components, that represent most
of the information of the original data set (Dunteman,
1989). Each principal component is a linear combination
of the original variables. Geometrically, the first principal
component is the line of closest fit to the n observations
in the p-dimensional variable space. Algebraically, the first
principal component, PC1, is a linear combination of the
original standardized variables x;.

12

PC1 = Zaﬁx,‘ (1)
i=1

In Eq. (1), the variance explained by PC1 is maximized

under the constraint that the sum of the squared weights
(e.g. ay;) is equal to one.

p
> =1 @)
i=1
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The basics statistics of principal components analysis
are the k variances (eigenvalues) and the associated vari-
able weight vectors (eigenvectors) a;,...,ax. The correla-
tions of the variables with a particular principal
component are called the loadings. The sum of the squared
correlations for each principal component equals the
amount of variance explained by each PC. Therefore, the
first principal component accounts for the greatest per-
centage of the variation in the original variables and the
explained variance gets smaller as successive principal
components are calculated.

In some multivariate analyses, the variables divide nat-
urally into two groups. A canonical correlation analysis
(CCA) can then be used to examine the relationship be-
tween these two sets of random variables. Given a set of
hydrological variables, X, (stream temperature in our case)
and a set of physiographical variables, Y, characterizing
each station location of X, CCA aims to link two sets using
vectors of canonical variates. It involves searching for lin-
ear combinations of X variables (U, U,,...,U;) that have
the maximum possible correlation with linear combinations
of Y variables (V4,V,,...,V;) (Manly, 2004). This is some-
what similar to the concept behind a principal components
analysis, except that in this case, correlation is maximized
instead of explained variance. Algebraically, a pair of sam-
ple canonical variates is a pair of linear combinations U
and V (Eq. (3)) having unit sample variances that maximize
the ratio called the sample canonical correlation (Eq. (4))

U=daX

3

V= bY 3)
0,512b

Fuy = o122 4

T Va@Snay/b'Sub @

In Eq. (3), a and b represent the canonical coefficients
vectors for the first and second set of random variables (X
and Y), respectively. In addition, Si,, S11 and S,, are the
sample covariance matrices consistent with the case of
the initial variables. In general, the kth pair of sample
canonical variates is the pair of linear combinations Uy, Vi
among those linear combinations uncorrelated with the pre-
vious k — 1 sample canonical variates (Johnson and Wichern,
2007).

Once PCA and CCA spaces are obtained, monthly maxi-
mum temperatures can be projected into these physio-
graphical spaces to be interpolated using kriging. This
geostatistical approach quantifies the spatial correlation
structure between stations as a function of separation dis-
tance. An experimental correlogram, or its inverse, the
semivariogram, is first established using water temperature
measurements and Euclidian distances measured using the
coordinates establishes by the first two PCA or CCA variates.
The semi-variance (or covariance) structure is estimated by
the experimental semivariogram:

L) ,
j(h) = T(h) Z(Zx,-+h - Zy) (5)

where N(h) is the number of data pairs at a separation dis-
tance h which have an observed value z,,. A model is then
fitted to the experimental semivariogram such as spherical,
exponential, or Gaussian functions with three parameters:

the nugget effect (Cp), the sill (c) and the range (a). The
nugget effect describes the occurrence of discontinuity at
the origin of the semivariogram that may be caused by dis-
similar sample values at short inter-station distances (Isaaks
and Srivastava, 1989). The sill is the plateau reached by jh,
which indicates a value of semi-variance that is a threshold
beyond which there is essentially no spatial structure in the
data. Finally, the range represents the distance over which
the observed values are correlated.

The kriging estimator is a weighted average of the ob-
served values z(x;) which is used to estimate the value of
Z(xp), identified at a specific location x, where there are
no measured values. The model is denoted

N(h)
> Jiz(xi) (6)

i=1

Z(xo) =

Where 4; are the weights of the estimator that minimize the
variance of the estimation error (ordinary kriging weights).
By using the spatial structure defined by the theoretical
semivariogram, a kriging system of linear equations combin-
ing neighbouring information can be defined as

N(h)
DX = Xx;) + v = (X = Xo) 7)
i=1

under the constraint on weights:

N(h)
> hi=1 (8)
i=1

where v is the Lagrange multiplier for the constraint on the
weights. The values of A; are obtained by solving this linear
kriging system. In the present study, the geostatistical soft-
ware GS+ (Gamma Design Software, 2007) has been used to
solve the kriging system.

Results

During July 1996 and July 1997, 12 stations were available to
perform the multivariate analysis (Table 1). In order, to con-
struct the CCA and PCA spaces, the first step was to choose
a maximum number of physiographical variables signifi-
cantly correlated with monthly maximum temperatures
for these two specific time periods. As an example, signifi-
cant (P-value < 0.05) correlation coefficients for July 1997
are reported in Table 3 and a maximum of 11 physiographi-
cal variables were selected for this month. Similar results
were found for July 1996. Smaller errors and stable models
for both years were obtained by using 10 of the most signif-
icant correlated variables for PCA and the eight most signif-
icantly correlated variables for CCA.

Kriging in PCA physiographical space

Figs. 2—4 illustrate the PCA results. Fig. 2 shows the load-
ings, i.e. the projection of the physiographical information
on the PCA space of the two first principal components,
which explain respectively 60.4 percent and 26.2 percent
of the total variance, for July 1996. Similarly, the two first
principal components for July 1997 explain respectively
63.6 percent and 20.7 percent of the total variance. PC1
(the x axis) is dominated in both cases by the geographical
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Table 3 Correlation coefficients between physiographical variables and monthly maximum water temperatures of July 1997 and

associated P-values.

Metrics Notation Correlation coefficient P-value
Latitude LAT 0.74 0.0055
Longitude LONG —0.59 0.0417
Drainage area DA —0.61 0.0337
Area of the closest lake ACL 0.70 0.0109
Altitude A 0.58 0.0489
Maximum altitude of drainage basin MAXA —0.66 0.0198
Mean slope of the drainage basin MS —0.67 0.0176
Stream order SO —0.60 0.0392
River kilometer RK —0.65 0.0220
Forest cover on drainage basin FC —0.66 0.0189
Percentage of area covered by lakes and marches PLM 0.69 0.0139

coordinates (LAT and LONG) and by drainage basin charac-
teristic such as river kilometer (RK) and drainage area
(DA). On the other hand, PC2 in both cases is most strongly
associated with forest cover (FC) and drainage basin topog-
raphy such as altitude at the station (A) and the maximum
altitude of the drainage basins (MAXA).

In order to determine and measure the multivariate spa-
tial structure of maximum water temperatures, the isotro-
pic experimental semivariograms were calculated in
accordance with work set scores, i.e. the projection of tem-
perature monitoring station on the PCA physiographical
space of the two first principal components. Fig. 3 presents
an example of the semivariogram calculated for July 1996
using separation distances in PCA coordinates. The adjusted
fitted semivariogram is an exponential function. Monthly
maximum water temperatures for each station were pro-
jected in PCA space for each period and ordinary kriging
was performed to obtain interpolated temperatures for
the entire PCA space. Fig. 4 shows the results obtained for
July 1996 and July 1997 where stations have been grouped
into three broad geographical regions

— Triangle: tributaries of the Ste-Marguerite River
— Circle: northern tributaries of the Moisie River
— Square: southern tributaries of the Moisie River

Note: the three broad geographical regions are identified on
Fig. 1.

The position of each station in the PCA space helps to de-
fine which stations or broad geographical regions are more
associated with warmer or colder maximum water temper-
ature in July. This exercise can help characterizing the area
of thermal stress or identifying the area of thermal refuge
under various hydrological conditions. The kriged maps
(Fig. 4) provide the basis for estimating water temperature
maxima for any location in the drainage basins under study
and probably on adjacent basins within region. For example,
in July 1996, lower maximum temperature conditions,
which may eventually become thermal refugia for poikilo-
therm fish, are found for PC1 values ranging between 2.08
and 3.36 and for PC2 values located between —0.73 and
—2.18. PC1 values ranging between —2.40 and —1.12 and
PC2 values between —0.52 and 0.52 characterize areas with
the highest temperatures that could become sites of poten-
tial thermal stress. Conversely, Fig. 1 shows a few ungauged

points (X mark) of the river system where the stream tem-
peratures were not monitored. By extracting physiographi-
cal information associated with each ungauged stations of
Fig. 1, it becomes possible to find the PCA coordinates
(score values) needed to estimate monthly maximum water
temperatures using kriged maps. Table 4 shows the physio-
graphical variables extracted as well as the estimated
monthly maximum water temperatures at each ungauged
points using PCA algorithm and kriged maps. The range of
estimated temperatures at ungauged stations is in accor-
dance with measured values in the geographical sub-region
of July 1996 (Table 1).

Kriging in CCA physiographical space

In comparison to the construction of the PCA space, the CCA
space is relatively different. First, because CCA involves
searching for linear combinations between two sets of vari-
ables by maximising the correlation instead of variance, it
becomes impossible to use all the significantly correlated
physiographical variables. Canonical correlation analysis
must restrict the number of degrees of freedom. In fact,
model parsimony dictates that the number of metrics be
as small as possible without deteriorating the correlation
structure between the two groups of variables (Stevens,
1986). Best results were obtained using 10 original variables
for July 1996 and 11 original variables for July 1997 to con-
struct the CCA space. In comparison with PCA analysis
where score values are obtained only with physiographical
variables, CCA analysis requires water temperatures and
associated variates (first set of variables) as well as physio-
graphical variables (second set of variables) to extract score
values. The July 1996 water temperature variables used in
CCA analysis were monthly maximum temperature and
monthly maximum daily range. Because a more comprehen-
sive data set was available in 1997, the July 1997 CCA uses
the monthly maximum water temperature of July, August
and September as the first set of variables. In both cases,
the 8 physiographical variables used as second group of vari-
ables to compute the canonical correlation analysis were
the 8 most significantly correlated variables (smallest P-va-
lue) of Table 3.

Sample canonical correlations (i.e. correlations between
the linear combinations of the two sets of variables) are al-
ways largest for the first pair of canonical variates (U4, V).
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Figure 2 Projection of significantly correlated physiographical variables in PCA space. Work set loading. (A) July 1996 and (B) July
1997.

Canonical correlations were 0.99 for July 1996 and July sian space is highly correlated with water temperature and
1997. For the second pair of canonical variates (U, V), it was selected as the CCA kriging space.

the canonical correlations were 0.86 and 0.98 for July As for PCA, semivariograms were calculated using the in-
1996 and July 1997 respectively. Hence, the V; and V, carte- ter-station distances in CCA space. Fig. 5 shows the semi-
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Figure 4 Interpolated monthly maximum water temperature
in PCA space performed with ordinary kriging. Triangle:
tributaries of the Ste-Marguerite River. Circle: northern tribu-
tairies of the Moisie River. Square: southern tributaries of the
Moisie River (see Fig. 1 to identify geographical regions). (A)
July 1996 and (B) July 1997. Note: station locations were not
identical for both years (see Table 1).

variogram obtained for July 1996, using a gaussian function
as fitted model. Ordinary kriging was performed for the en-
tire CCA space by projecting monthly maximum water tem-
peratures for July 1996 and July 1997. Fig. 6 presents the
results with groups of stations (tributaries of the Ste-Mar-
guerite River, northern tributairies of the Moisie River and
southern tributaries of the Moisie River) identified and pro-
jected in the interpolation space. The spatial pattern of sta-
tions is less structured than in PCA space. The three broad
geographical regions are still recognizable but the three

clusters are less defined with CCA. The cluster which repre-
sents the northern tributaries of the Moisie River (circle) is
well circumscribed in contrast with the other stations char-
acterizing the southern tributaries of the Moisie River
(square) and the tributaries of Ste-Marguerite River (trian-
gle) which are less ordered. However, they are still located
in a same area of the CCA space.

Kriging performances

A cross validation using leave-one-out resampling was used
to estimate the error associate with the interpolation of
monthly maximum water temperature in PCA and CCA
space. This validation technique eliminates temporarily a
station from the sample and the value for this observation
is then estimated using remaining stations. This procedure
was repeated for the whole station set. The relative mean
bias (BIASr) as well as the relative root mean square error
(RMSEr) were used as performance evaluation criteria.
These indicators are defined as follows:

n

1 Zi — Z;
BIAST = > <—Azmax) )

i=1
=)
AZppax

where z; and Z; are respectively the observed value and the
estimated value at station i. Because the range of observed
maximum temperature was relatively small in July 1996 and
July 1997, the rBIAS and the rRMSE were redefined using this
maximum range (AZmax = Zi max — Zi min) Of both years as the
denominator. Egs. (9) and (10) are a more conservative
interpretation of error than the usual definition of BIASr
and RMSEr, because Az, is of typically less than 1.5 °C,
while the typical temperature in July was more than 10
times Azax. According to Table 5, BIASr and RMSEr varied,
respectively, between —2.5% and 1.1% and 5.2% and 20.9%
of the range of measured values (i.e. Az, see Egs. (9)
and (10)). Kriging in CCA space produced lower RMSEr than
PCA, especially for July 1996.

n

>

i=1

RMSEr =

(10)

Discussion

This study focused on the characterization of the river ther-
mal regime at the drainage basin scale using multivariate
and geostatistical approach. The use of PCA and CCA was
shown by Chokmani and Ouarda (2004) to provide an ade-
quate means of summarizing climatic and/or physiographi-
cal variability of drainage basins, while producing at the
same time a cartesian space in which interpolation of hydro-
logical extremes can be performed. The results shown in the
present study confirm that a similar space can be used to
interpolate water temperature extremes, which can be of
interest for many water resources management issues such
as fish habitat. The present study focused only on monthly
maximum temperatures of July 1996 and July 1997 as a test
case to construct kriged maps. However, other temperature
statistics could be used such as daily mean, daily minimum
or daily range to characterize any temperature events of
short or long duration.
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Table 4 Physiographical variables extracted to estimate monthly maximum stream temperatures using the PCA algorithm at

ungauged stations (Fig. 1) for July 1996.

Stations LAT LONG DA A MAXA  MS SO RK FC PLM  PC1 (score) PC2 (score) T (°C)
X1 5771721 652543  6272.4 325.0 904 5.30 7 5967.2 82.1 12.6 -3.36 —1.32 18.1
X2 5683390 689416 10507.7 152.0 915 6.79 7 10451.4 85.2 10.6 —0.61 —1.50 17.6
X3 5623021 693833 13786.4 46.0 986 9.09 7 14154.6 86.6 10.2 1.24 -1.22 17.4
X4 5606334 709213 4124.7 46.0 901 12.69 6 4573.5 87.8 10.9 -0.16 0.11 17.6
X5 5590114 700899 18871.3 18.0 1009 10.50 7 19594.0 87.1 10.2 2.55 —1.49 16.7
X6 5607757 666115 5196.9 65.0 1055 11.36 6 5893.8 7.2 91.6 0.67 2.37 17.1
1.20 A 250
E 0.90 0
& 0E0
= 5 1.70
& 030
000+ ' ! —
0.00 1.00 2.00 3.00 400 0.90
Separation Distance (h) 8
Figure 5 Experimental semivariogram of July 1996 used to ©
krige in CCA space. Gaussian model with nugget =0.001, 0.10
range = 6.639 and sill =2.011. Search radius was limited to
h<3.2.
-0.70
PCA kriging appears to be somewhat less accurate than
interpolation in CCA space. This result is similar to those ob- 450
tained by Fernandez and Saenz (2003) as well as Chokmani ’
and Ouarda (2004) with hydrological variables. However, = AR A S5 g4l 12 =
as expected PCA provides more definite clusters of stations
because the underlying criterion is the maximization of the B 2%
explained physiographical variance. An examination of
Fig. 4 reveals the three clusters which define specific areas
of the drainage basin of the Moisie and Ste-Marguerite riv- 1.70
ers. Therefore, the PCA space is a better representation
of physiographical contrasts between regions. When com-
paring July 1996 and July 1997, it can be seen that each
. i 0.90
cluster was characterized by a specific range of tempera-
tures. Stations from the same cluster have a similar thermal S
regime associated with a specific area of the drainage basin. ©
The first two broad geographical regions constituted by the 0.10
stations from tributaries of the Ste-Marguerite River (trian-
gle) and southern Moisie River (square) are located on both
maps of Fig. 4 in a part of the PCA space where the monthly 070 -
maximum temperature varies between 16.6 and 17.7 °C. On
the other hand, the region defined by the stations from the
northern tributaries of the Moisie River (circle) were found
to be projected in an area where the monthly maximum -1.50 -
water temperatures were warmer than the two other clus- "= 1 540 o4 10 L
ters with temperatures oscillating between 17.3 and cet
18.5 °C. This reverse north to south gradient can be partly Figure 6 Interpolated monthly maximum water temperature

explained by the proximity of the northern stations to the
upper lakes which become relatively warm during hot sum-
mer months. Moreover, the southern stations from Ste-Mar-
guerite and Moisie rivers are more influenced by a good
number of upstream cold tributaries during the same
period.

in CCA space performed with ordinary kriging. Triangle:
tributaries of the Ste-Marguerite River. Circle: northern tribu-
tairies of the Moisie River. Square: southern tributaries of the
Moisie River (see Fig. 1 to identify geographical regions). (A)
July 1996b and (B) July 1997. Note: station locations were not
identical for both years (see Table 1).
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Table 5 Cross—validation results.

Kriging in the PCA physiographical

Kriging in the CCA physiographical

space space
July 1996 July 1997 July 1996 July 1997

BIAST (%) ~0.38 ~2.03 1.14 ~2.54

RMSEr (%) 20.89 19.71 5.17 18.49

For July 1996 and 1997, PCA reveals that the latitude
(LAT) and the river kilometer (RK) are most strongly associ-
ated with PC1, while the percentage of forest cover (FC) as
well as metrics related to altitude (A and MAXA) are associ-
ated to PC2. Hence the geographical position as well as the
degree of ramification of stream within each drainage basin
appears to be suitable metrics for the interpolation of tem-
perature maxima. This conclusion is in accordance with the
results of Gardner et al. (2003) who used similar metrics in
their 1D interpolation. In addition, the percentage of forest
cover, strongly associated with PC2 is in fact, an important
metric to characterize the quantity of solar radiation. On
the other hand, the maximum altitude of the drainage basin
(MAXA) and the altitude at the station (A) are two metrics
that influence directly air temperature and therefore indi-
rectly affect water temperature. Such additional informa-
tion could not readily be included in a 1D interpolation
scheme.

It is interesting to note that, despite of the fact that CCA
does not maximize explained physiographical variance, the
CCA kriged maps of July 1996 and 1997 (Fig. 6) generally
show the same station clusters than those obtained with
PCA. Therefore, both approaches were able to reproduce
three regions with distinct thermal signatures. For both
time periods analyzed in our study, CCA presented RMSEr
values lower than those obtained with PCA (Table 5). One
potential reason for this difference is that PCA is restrained
to maximizing the variance along the physiographical space
irrespectively of water temperature variability. For this rea-
son, the CCA technique is more adapted to link physiograph-
ical information with specific stream temperature.
Canonical correlations can be a very useful tool for a priori
estimation of the links between physiographic features and
thermal regime. It is interesting to note that CCA kriging
produced better results with 8 metrics while PCA required
10 explanatory variables. The extraction of metrics using
GIS can be time consuming and thus, it becomes relatively
advantageous to optimize the number of metrics used and
to reduce the degree of model complexity. It should be
noted that attempts to use less than 8 or 10 metrics, respec-
tively, for CCA and PCA lead to a decrease in model perfor-
mance, in terms of RMSEr values. In fact, model parsimony
dictates that the number of metrics must be as small as pos-
sible without deteriorating the correlation structure which
is directly associated with semivariogram calibration and
kriging performances.

To demonstrate the improvement of this modelling tech-
nique over more traditional approaches, we performed mul-
tiple linear regressions to estimate maximum water
temperature for July of both years using the same indepen-
dent variables (Table 3) than those selected for PCA and

CCA. We found respectively RMSEr and BIASr values of 99%
and —42% for July 1996 and values of 47% and 10.9% for July
1997. Moreover, in the study realized by Joseph et al.
(2007), it was shown that kriging in CCA space with 21 sta-
tions led to better results than a simple linear regression
(RMSEr values of 54.4% versus 59.6% and BIASr of —13% ver-
sus 20%) for the estimation of the mean annual streamflow.
In both cases, kriging in multivariate space with a relatively
low number of stations gives better result than regression
analysis in terms of error estimations and shows less bias
in the model.

In this present study, kriging was performed with a sparse
network of stations (12) on a relatively large territory. With
so few measurements, it becomes difficult fitting a semi-
variogram model. Attempts to further decrease the number
of stations led to a very poor fit of the theoretical semivari-
ogram and therefore no modelling capability. In fact, the
variability in the performances of the model observed for
CCA between 1996 and 1997 is explained by the variation
of the quality of the semivariogram fitting between these
two years. Even if all metrics were significantly correlated
with monthly maximum temperatures, with so few mea-
surements, even one station with poorer metric measures
is sufficient to introduce outliers in the experimental semi-
variograms. Therefore, the kriging performances can de-
crease largely between years because the correlation
structure is highly dependant on all observations with only
12 stations.

In addition to the cross validation provided, Table 4 illus-
trates how to predict stream temperature at ungauged sta-
tions. By extracting physiographical information for each
ungauged stations and by using the PCA algorithm of July
1996 constructed with only 12 stations in our case, PCA
coordinates (score values) can be calculated for any loca-
tion and stream temperatures can be estimated. In fact,
once the physiographical information is known it becomes
possible to use the PCA algorithm or the CCA algorithm for
water temperature estimation anywhere in the study area,
at any time period for which we have a minimum (e.g. 12
in our case) number of measurements. There were no tem-
perature measurements to validate the estimated tempera-
tures in Table 4. However, estimated values appeared to be
in the same range as those observed in the nearby station
belonging to the same cluster. For this reason we can as-
sume that each cluster represents a relatively homogenous
geographical region in terms of physiographical characteris-
tics. For ungauged stations outside of these 3 regions, water
temperature estimation seems to be appropriate, i.e. no
unreasonable values were predicted.

Finally, it is important to recall that one of the main
sources of uncertainty in the interpolation stage is network
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density and spatial distribution of stations, which can be re-
lated to kriging variance (St-Hilaire et al., 2003b). As seen
in Fig. 1, the stations used in the present study were not uni-
formly dispersed on the drainage basins but rather formed
clusters with relatively large regions with no measurements
in between these clusters. This has direct implications on
neighbourhood definition and semivariogram calibration.
The user must find the appropriate trade-off between good
local interpolation and high variance in low density areas.

Conclusions and future work

This study focused on developing a new stream temperature
model by using a multivariate geostatistical approach. A
physiographical space-based estimation technique was used
for the interpolation of stream temperature rather than the
usually employed geographical space. It was demonstrated
that both multivariate methods, i.e. PCA and CCA, can be
employed to construct the physiographical space and then
used to build semivariograms for characterizing the correla-
tion structure and ultimately, to perform spatial interpola-
tion. A better performance was observed using the CCA
algorithm. In addition, CCA required less information to pro-
vide more satisfactory results. Future work should include
the possibility of testing the method on a much denser net-
work of temperature loggers and compare the performance
of each algorithm as network density decreases. The opti-
mal choice of metrics may also change as a function of net-
work density and a sensitivity analysis may lead to an
optimal design.

The present study focused on two relatively large contig-
uous drainage basins (Moisie and Ste-Marguerite) located on
the Quebec North shore. Hence the physiographical features
of both basins are somewhat similar. A future study should
test the approach when there is potentially greater physio-
graphical variability (e.g. various drainage basin areas, dif-
ferent climate, etc.). At the other end of the
physiographical spectrum, the method could also be tested
on a sub basin or river reach for which the selection of vari-
ables may be different.

Other multivariate approaches should be considered in
subsequent analyses to construct a more informative space
in which kriging could be performed. As example, nonlinear
methods such as Principal Curves Analysis, Curvilinear Com-
ponent Analysis, Nonlinear Canonical Correlation Analysis,
Nonlinear Redundancy Analysis or Nonlinear Principal Pre-
dictor Analysis could be used (Yin, 2007). Most of these
methods are explicitly designed for dimensionality
reduction.

It is believed that this model can become a powerful tool
to understand thermal regime of rivers which is often essen-
tial for best management of aquatic resources including
fisheries.
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