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A Review of Statistical Water Temperature Models
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and Bernard Bobée

Abstract: The use of statistical models to simulate or to predict stream water temperature is 
becoming an increasingly important tool in water resources and aquatic habitat management. 
This article provides an overview of the existing statistical water temperature models. Different 
models have been developed and used to analyze water temperature-environmental variables 
relationship. These are grouped into two major categories: deterministic and statistical/stochastic 
models. Generally, deterministic models require numerous input data (e.g., depth, amount of 
shading, wind velocity). Hence, they are more appropriate for analyzing different impact scenarios 
due to anthropogenic effects (e.g., presence of reservoirs, thermal pollution and deforestation). 
In contrast to the deterministic models, the main advantage of the statistical models is their 
relative simplicity and relative minimal data requirement. Parametric models such as linear and 
non-linear regression are popular methods often used for shorter time scales (e.g., daily, weekly). 
Ridge regression presents an advantage when the independent variables are highly correlated. 
The periodic models present advantages in dealing with seasonality that often exists in periodic 
time series. Non-parametric models (e.g., k-nearest neighbours, artificial neural networks) are 
better suited for analysis of nonlinear relationships between water temperature and environmental 
variables. Finally, advantages and disadvantages of existing models and studies are discussed.

Résumé : Étant donné l’importance de la température dans l’habitat aquatique, et étant donné 
les impacts humains actuels et potentiels sur le régime thermique des rivières, il s’avère nécessaire 
de développer des outils de gestion des ressources hydriques. Cet article propose une synthèse 
bibliographique des différents modèles utilisables pour la simulation ou la prévision de la température 
de l’eau. De nombreux modèles existent pour prédire la température de l’eau en fonction des 
conditions environnementales. Ils se regroupent essentiellement en deux grandes catégories: les 
modèles déterministes et les modèles statistiques/stochastiques. Les modèles déterministes de la 
température de l’eau nécessitent souvent un grand nombre d’intrants (e.g., couvert végétal, vitesse 
du vent, profondeur de la rivière) qui ne sont pas toujours disponibles. Alternativement, les modèles 
statistiques offrent l’avantage de nécessiter moins de données et un temps de développement 
habituellement moins long que les modèles déterministes. L’article réalise une étude comparative de 
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l’application des différents modèles statistiques 
existant à savoir les modèles paramétriques 
(régression linéaire, non-lineaire, régression 
« Ridge », modèles périodiques, etc.) et les 
modèles non-paramétriques (Réseaux de 
Neurones Artificiels et les k-Voisins les plus 
proches). Tous ces modèles ont donné des 
résultats encourageants voire satisfaisants 
et il est difficile d’exhiber la supériorité d’un 
modèle particulier. On conclue en présentant 
les avantages et les limites des différents 
modèles. 

Introduction

Importance of Water Temperature for Fish 
Habitat

Water temperature is one of the most important 
parameters in ecosystem studies. Temperature can 
influence both chemical and biological processes such 
as dissolved oxygen concentrations, fish growth and 
even mortality. Many biological conditions are linked 
to river thermal regime. For instance, Hodgson and 
Quinn (2002) demonstrated that the triggering of the 
spawning period for Sockeye salmon (Onchorhyncus 
nerka) on the northwest coast of the United States 
was strongly influenced by water temperature. They 
found that when a threshold of 19°C was reached, 
spawning was interrupted as individual fish sought 
thermal refuge. Bjornn and Reiser (1991) showed that 
high stream temperatures in the range of 23-25°C can 
increase the mortality rate of salmonid fish. Johnson 
(1997) reported on the relation between the timing 
of emergence of Atlantic salmon (Salmo salar) fry 
and water temperature. Many studies have addressed 
human influences or anthropogenic perturbations of 
river thermal regime in order to better understand 
their impacts on fish habitat. For example, Beschta 
et al. (1987) have studied the impact of forestry 
operations on river water temperature whereas Webb 
and Walling (1993) looked at the impact of reservoirs 
on downstream temperatures.

River and stream temperatures can also be 
impacted globally, by climate change. Notably, Eaton 
and Scheller (1996) suggested that under a doubling of 
the current atmospheric carbon dioxide concentration, 
densities of a number of cold water fish species could 

decline by as much as 50 percent in the United States. 
Mohseni et al. (2003) reported that, under this scenario, 
suitable thermal habitat for cold water fish will suffer a 
36 percent decrease. 

These and other studies show the critical role 
of river water temperature and the importance of 
understanding the thermal regime of rivers for effective 
aquatic habitat management.

Temporal, Spatial Variability and the Need for 
Modelling Tools

The thermal regime of rivers is affected by heat 
exchanges in which both meteorological factors and 
physical characteristics are important. Meteorological 
factors affecting the temporal variability of energy 
exchanges include the annual cycle of incoming solar 
radiation as well as short-term conditions of wind 
speed, humidity and air temperature among others. The 
natural processes of heating and cooling highly depend 
on meteorological conditions as well as stream physical 
and hydrological characteristics. Stream characteristics 
affecting energy exchange include riparian vegetation 
(especially in small streams), stream aspect, channel 
geomorphology, valley topography, location of 
tributaries and groundwater inflows. Spatial and 
temporal variations in water temperature are important 
for aquatic resources (Vannote et al., 1980).

The natural spatiotemporal variability is often 
disturbed by human activities such as deforestation 
and regulation by dams (Webb and Walling, 1993). 
For instance, riparian vegetation, which can be 
affected by forestry operations, can have a major 
effect on various components of the stream heat 
budget (Brown and Krygier, 1967; St-Hilaire et al., 
2000). Flow modification and/or water withdrawal 
can also impact on spatial and temporal variability 
of water temperature (Sinokrot and Gulliver, 2000). 
In a recent study, correlations between air and 
water temperature were shown to be stronger when 
discharge was below the annual median (Gu et al., 
1998; Webb et al., 2003). 

Because of the ecological importance of stream 
water temperature and the potential impact of human 
activities on such temperatures, it is important to 
provide water resource and fisheries managers with 
efficient assessment and modelling tools. There are a 
number of different applications of water temperature 
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models. They include water temperature forecasts for 
short (e.g., next day) or longer time scales (from weeks 
to years). Hindcast can be done when available time 
series are short in order to extend the records in the 
past. Water temperature simulations can also be done 
to investigate the potential impact of anthropogenic 
effects on the thermal regime of rivers. For instance, 
water temperature models have been included in 
decision support systems to assist managers in 
determining optimum outflows that maintain adequate 
temperature ranges for biota (e.g., Gu et al., 1999; 
Krause et al., 2005).

We describe a number of statistical models for 
predicting water temperature based on a literature 
review. The emphasis of the review will be on statistical 
models as they are widely used in many fields of study, 
mainly due to their relatively low data requirement and 
simplicity in application. 

Water Temperature Model Categories

Different models have been developed and used to 
predict river water temperature. These models have 
been classified into two major categories: deterministic 
models and statistical models. In specific application, 
each type of model has advantages and drawbacks. 
Although the aim of this review is to compare available 
statistical models, deterministic models will also be 
briefly described within the next section.

Deterministic Models

Deterministic models are based on mathematical 
representation of the underlying physics of heat 
exchange between the river and the surrounding 
environment. Such models are generally carried out 
using an energy budget approach (Morin and Couillard, 
1990; Sinokrot and Stefan, 1993; St-Hilaire et al., 
2000). They require numerous input data including 
stream geometry, hydrology and meteorology. For 
example, physical characteristics of the stream such as 
the depth of water as well as the amount of shading 
and wind sheltering are often essential components 
of deterministic models in order to estimate the total 
energy exchanged within a river reach. 

Deterministic models are efficient tools when 
the users want to simulate modifications to some 

components of the heat budget (St-Hilaire et 
al., 2000). Consequently, they are very useful for 
analyzing and comparing different impact scenarios 
due to anthropogenic effects such as presence of 
reservoirs, thermal pollution, deforestation and others. 
For instance, the SHADE model simulates water 
temperature and includes shading effect (Chen et al., 
1998). More recently, St-Hilaire et al. (2000) modified 
the CEQUEAU hydrological and water temperature 
model (Morin et al., 1981) to include soil temperature 
and crown closure in its calculation of local advective 
terms in the heat budget. Other deterministic models 
include the U.S. Fish and Wildlife SSTEMP model 
(Bartholow, 1999), as well as a number of simpler 
models (e.g., Sinokrot and Stefan, 1993; Gu et al., 
1998; Gu and Li, 2002; Younus et al., 2000). One 
potential limitation of this modelling approach is that 
these tools can be quite demanding in terms of data 
requirement and their implementation can therefore 
be complex.

Statistical/Stochastic Models

An alternative approach to deterministic models in 
predicting or simulating water temperatures is the 
use of statistical or stochastic models. In contrast 
to the deterministic models, the main advantage 
of the statistical models is their relative simplicity 
and minimal data requirement. Statistical models 
can generally be classified in two categories, namely 
parametric and non-parametric models. Among 
parametric models, a further classification can be 
made into regression models and stochastic models. 
Regression models are usually applied for predicting 
or simulating water temperature at weekly, monthly 
and annual time steps, relying mainly on the relatively 
high correlation between air and water temperature at 
those time scales. This correlation is always significant, 
because of the joint dependence of these two variables 
on solar radiation. In some cases, non-linear regression 
models have been used to better capture the leveling 
off of water temperature at both high and low air 
temperature (Mohseni et al., 1998). 

When water temperatures are modelled for a 
shorter time step than weekly, linear and non-linear 
regression models are generally more difficult to 
apply due to the autocorrelation within the water 
temperature time series. Hence, for shorter than weekly 
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time scales, e.g., daily, stochastic models are often used 
as well as other types of models that account for the 
autocorrelation. 

Although stochastic models linking water to 
air temperatures offer a simple means of predicting 
or simulating water temperature, other statistical 
models, such as parametric (e.g., Box Jenkins, 
ARMA, etc.) and non-parametric models (k-Nearest 
Neighbours, Artificial Neural Networks, etc.) are 
“statistically faithful” to the type of time series and 
adequately represent water temperature variability. 
Non-parametric models differ from parametric 
models in that the model structure is not specified 
a priori, but is instead determined from data. The 
following sections provide a more detailed review of 
the statistical approaches available to model water 
temperature.

Parametric Statistical Models

Regression Models

Many studies have used a statistical approach to predict 
water temperature. Simple regression-based models 
have been successfully used to model water temperature 
as a function of one (usually air temperature) or more 
independent variables. The structure of these simple 
models can be depicted as

 Tw(t) = a0 + a1 Ta(t)+ε(t) (1)

where Tw(t) is water temperature for a given time 
period; Ta(t) is air temperature for the same time period 
as water temperature; a0, a1 are regression coefficients 
and ε(t) is an error term.

Such linear regression models have been applied 
by many authors, including Smith (1981); Crisp and 
Howson (1982); Mackey and Berrie (1991);  and Stefan 
and Preud’homme (1993). The latter demonstrated that 
the water-air temperature relationship becomes less 
scattered as the time interval of the data increases from 
two hours, through daily averages to weekly means. 
Pilgrim et al. (1998) also used linear regression to 
relate stream water temperature to air temperature for 
a number of sites in Minnesota (United States). They 
showed that the slope of the regression increases with 
time scale (daily, weekly and monthly). Erickson and 
Stefan (2000) showed that both the slope and intercept 

are a function of the time scale. They concluded that 
during open water periods, streams in Minnesota 
had a good linear air/water temperature relationship; 
however the warmer Oklahoma sites showed a non-
linear structure when air temperature exceeded 25°C. 
This was most likely due to evaporative cooling. 

Equation (1) specifies air temperature as the 
only independent variable, but the model has been 
generalized using multiple regression. Webb et al. 
(2003) noted that flow is another important variable 
that should be considered in water temperature models. 
Their study showed that air and water temperatures are 
more strongly correlated when flows are below median 
levels. 

In situations where the predictor variables 
are highly cross-correlated amongst themselves 
(collinearity), the challenge is to minimize the 
possibility of including redundant variables in the 
model. Ridge regression is an attempt to deal with 
collinearity through the use of a form of biased 
estimation in place of ordinary least squares (OLS) 
regression. The basic justification for ridge regression 
is that a slightly biased estimator with smaller 
variance may be more advantageous than an unbiased 
estimator having large variance. The ridge regression 
is a regression approach under constraint (Hoerl and 
Kennard, 1970) for which the equation is similar to 
the multiple regression model. In matrix form, the 
multiple regression can be written as

 Y = βX + ε (2)

where Y is the vector representing the dependent 
variable; β is the vector of coefficients to be adjusted; 
X is the matrix of independent variables and ε is the 
error term.

The estimator β can be given by the equation

 β = (X' X)-1 X' Y (3)

In the ridge regression, a ridge constant K is included 
in order to avoid ill-conditioning of X

 β = (X' X+ KI)-1X' Y (4)

where I is the identity matrix. 
The selected value for the ridge constant is the 

lowest value for which β is stabilized. Ahmadi-
Nedushan et al. (2007b) have shown that a ridge 
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regression model can be used to simulate daily water 
temperature with two lagged water temperature terms, 
air temperature and streamflow as exogenous variables. 
Simulations on the Moisie River (Québec) showed 
good results with a root mean square error (RMSE) 
<0.65°C, an error that was similar in value to that of 
the linear regression model.

Most regression studies acknowledge that an 
error term exists (e.g., Equation (1)) but few discuss 
the importance and the characteristics of this error 
term. Given the high seasonality of water temperature, 
autocorrelation is likely to occur in the error term, 
especially when linear regression is used to model water 
temperature at short time steps (e.g., daily or weekly). 
The effect of seasonality was emphasized by Langan et 
al. (2001) who showed that the linear relationship can 
be partitioned on a seasonal basis. They found that the 
best fit between air and water temperature occurred 
in the summer. Seasonality can also be reflected by a 
hysteretic behaviour of the air-water relationship. Webb 
and Nobilis (1997) stated that the clockwise hysteresis 
in this relationship was caused by changes in seasonal 
regression slopes with warmer air temperature in the 
fall yielding the same water temperature as colder air 
temperature in the spring. 

The assumption that the water–air temperature 
relationship is linear has been questioned. Indeed, 
Mohseni et al. (1998) also observed a non-linear 
behaviour between air and water temperatures at 
weekly intervals. Accordingly, these authors developed 
a model based on the logistic S-shaped function to 
predict average weekly stream temperatures at different 
locations in the United States. The logistic function 
used by Mohseni et al. (1998) to determine the air to 
water relation is given by

 Tw =  α (5)
 1 + eϒ(β-Ta )

where Tw and Ta represent water and air temperatures, 
α is a coefficient which estimates the highest water 
temperature, β is the air temperature at the inflexion 
point and ϒ represents the steepest slope of the logistic 
function. The advantage of this model over the linear 
regression is that it can better represent the tendency 
of water temperature in some water bodies to level 
off at higher air temperatures (Mohseni and Stefan, 
1999). This change in slope has mainly been attributed 

to groundwater inputs and the effects of freezing at 
low temperatures and to evaporative cooling at high 
temperatures. 

Equation (5) was also used by Webb et al. (2003) to 
model water-air temperature relationship at different 
time steps on the Exe River, United Kingdom. They 
found significant non-linear relations between these 
two variables at the hourly time step. 

Autoregressive Models

Among the autoregressive methods used to simulate 
and predict water temperature, some of models are 
labelled as “stochastic”. In this approach, the water 
temperature time series are generally divided into two 
components, namely the long-term annual component 
(seasonal variation) and the short-term variations or 
departure from the annual component (residuals). 
Then, time series models (e.g., Box Jenkins, ARMA, 
etc.) are fitted to water temperature residuals (short-
term variations), once the seasonal component of the 
signal has been removed. Applications of this approach 
include those of Kothandaraman (1971), Cluis (1972), 
and Caissie et al. (1998; 2001). 

Autoregressive (AR) models take into account 
the autocorrelation structure within the stream 
water temperature time series and can also account 
for the correlation with external variables (e.g., air 
temperature, streamflow) at various lag periods. The 
seasonal variation can be modelled by a Fourier series 
analysis (Kothandaraman, 1971) or even a simple 
sinusoidal function (Caissie et al., 1998). For example, 
the sinusoidal function may be written in the following 
form 

 Twseasonal(t) = a + b Sin[ 2π (t + t0)] + ε(t) (6)
 365

where Twseasonal(t) is the seasonal component of 
a temperature time series; a, b and t0 are fitted 
coefficients that can be estimated using a nonlinear 
regression approach. It should be noted that Equation 
(6) needs to be modified when the sinusoidal function 
is fitted to a period shorter than one year (e.g., Tasker 
and Burns, 1974).

The short-term component is generally modelled 
using a variety of approaches ranging from multiple 
regression analysis (Kothandaraman, 1971), to a 
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second order Markov chain (Cluis, 1972), or the 
use of Box-Jenkins time series analysis (Marceau et 
al., 1986). Caissie et al. (1998) compared these three 
different “stochastic” approaches to model mean and 
maximum daily water temperatures in a relatively 
small stream (Catamaran Brook, New Brunswick, 
50 km2 drainage area) using air temperature as the 
independent variable. Their preferred methodology, 
based on the comparison of goodness of fit (e.g., Nash 
coefficient) and error statistics (e.g., root mean square 
error) involved estimating an annual component in 
stream temperatures by fitting a Fourier series to the 
data and a second order Markov process model for the 
short term component. A similar study was also carried 
out by Caissie et al. (2001) in which they modelled 
maximum daily stream temperatures at the same study 
site (Catamaran Brook) using a stochastic model. 
Annual RMSE values for the six modelled years varied 
between 1 and 1.88°C. 

The stochastic approach is a method which 
requires relatively few parameters and thus its 
application is simpler. This approach can provide very 
good results. For instance, Caissie et al. (1998) have 
obtained RMSE less than 0.9°C. Despite the good 
RMSE, this approach has some potential difficulties. 
For instance, a fixed sinusoidal function needs to be 
fitted to the time series. Thus, it can be argued that 
this may result in non-stationary residuals from year 
to year. Stationarity (i.e., no seasonality in the data) is 
one of the underlying hypotheses of a number of time 
series models, including AR and Box Jenkins. As such, 
users should verify that residuals are indeed stationary 
prior to implementing such approaches.

Periodic Autoregressive Models

Stream temperatures and air temperatures are better 
correlated at the weekly and monthly timescale than 
at the hourly or daily scale because of the thermal 
inertia of water bodies (Pilgrim et al., 1998). Weekly 
stream temperature values have been used as criteria 
to characterize some fish habitat in a number of 
studies (e.g., Eaton and Scheller, 1996; Stefan et al., 
2001), although it may be important in some studies 
to predict water temperature for shorter time scales. As 
stated in the previous section, the common procedure 
in modelling such periodic series is to deseasonalize the 
series prior to applying the stationary models (Salas et 

al., 1980; Vecchia, 1985; Salas, 1993; Chen and Rao, 
2002). However, filtering time series may not yield 
stationary residuals due to periodic autocorrelations. 
In such cases, the resulting model may be misspecified 
for series in which periodic properties are present 
(Tiao and Grupe, 1980). To model periodicity in 
autocorrelations, periodic models can be advantageous. 
In such situations, an important class of periodic 
models consists of Periodic AutoRegressive (PAR) and 
Periodic AutoRegressive Moving Average (PARMA) 
models, which are extensions of commonly used 
ARMA models (Box and Jenkins, 1976) with the 
difference that the former use periodic parameters. 
ARMA models assume that the data are stationary 
(i.e., no seasonality in the data). PARMA models are 
widely used for prediction of economic time series 
(Osborn and Smith, 1989; Novales and de Frutto, 
1997) as well as in the field of hydrology (Salas et al., 
1980; Vecchia, 1985; Bartolini et al., 1988; Ula and 
Smadi, 1997). PAR and PARMA models are usually 
applied to time series at monthly time steps or more, 
which limits the number of periods to 12 and hence 
the number of parameters. 

Recently, to model the average weekly maximum 
temperatures (Tw), Benyahya et al. (2007a) compared 
the performance of PAR and AR models. The PAR 
model of lag-i used was of the form
 p

 Twv,τ = μ
τ
 + Σφi,τ(Twv,τ-i – μ

τ-i )+εv,τ 
(7)

 i=1

where v is the year; τ is the season (or period); μ
τ
 is the 

mean of the water temperature process in season τ; and 
φi,τ 

is the autoregressive parameter, which is estimated 
for each season by using the least square method. The 
error εv,τ is assumed to be normally distributed with 
mean zero and variance one. This model was calibrated 
using 18 years of average weekly maximum temperature 
series on the Deschutes River (Oregon, United States) 
and good modelling results have been obtained with a 
PAR(1) model with an average error (RMSE) less than 
1°C, which is similar to the RMSE obtained from an 
AR(1) model. Benyahya et al. (2007a) commented that 
PAR models would likely perform better with longer 
time series.

PAR models rely strictly on the autocorrelation 
structure of the variable of interest (water temperature). 
For water resource and fisheries managers, it may be 
important to include other variables that may have 
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an impact on the thermal regime of rivers, such as 
air temperature and flow. For this reason, the PAR 
method was extended by Benyahya et al. (2007b) to 
incorporate other input variables (e.g., air temperature, 
streamflow) called exogenous variables and therefore 
the PAR model become a PARX model. A PARX 
model representing the water temperature series may 
be written in the following form

 
p1 

p2 
p3

 Twv,τ = Σ φ1i1,τTwv,τ-i1 +Σ φ2i2,τTav,τ-i2
+ Σ φ3i3,τQv,τ-i3  i1=1 i2=1 i3=1

 
+
 
εv,τ 

 
(8)

where φ1i1,τ, φ2i2,τ and φ3i3,τ are periodic parameters, 
p1, p2 and p3 are the lags of water temperature, air 
temperature and streamflow, respectively, εv,τ is the error 
term and τ〉i1, i2, i3. This model was calibrated using 21 
years of weekly water temperatures of the Nivelle River 
(France) and results indicated that the PARX model 
performed relatively well with RMSE <1.60°C. 

The periodic models are particularly well adapted 
for weekly data with a good level of performance; 
however, these models require the estimation of a large 
number of parameters (i.e., one set of parameters for 
each period). Depending on the length of the time 
series available to calibrate the model this can violate 
the principle of parsimony (e.g., select a model with as 
few parameters as possible). 

Non-Parametric Statistical Models

The second main category of statistical models use the 
so-called non-parametric approaches. The structure of 
these models is highly dependent on available data and 
there is generally no judgement made by the modeller on 
the statistical structure of the model. Non-parametric 
models are considered to be good “data-learners” and 
their use should be limited to the range of values 
encountered in the past, i.e., their performance in the 
extrapolation range can be less reliable. Nonetheless, 
recent advances in computational algorithms and 
computing power of modern computers have made it 
possible to implement these models with relative ease. 
Artificial Neural Networks as well as the k-Nearest 
Neighbours are examples of such approaches that have 
been adapted to water temperature modelling.

Artificial Neural Networks

An Artificial Neural Network (ANN) model is a 
mathematical structure capable of describing complex 
nonlinear relations between input and output data. The 
architecture of ANN model is inspired by biological 
nervous systems (Figure 1). As in nature, independent 
variables (or predictors) are fed as inputs in the input 
layer through nodes (the n neurons shown on the 
left of Figure 1) used during neural network training. 
The hidden layer, represented by the middle circles in 
Figure 1, is the location where the neural network is 
“trained,” i.e., all outputs from the input layer are fed 
to each node, and weights are assigned to non-linear 
functions that combine the inputs (Ahmadi-Nedushan 
et al., 2007a). The network connection weights are 
adjusted in order to minimize the error between the 
ANN outputs and the training set of the variable to 
be modelled. The weights of each node in the layers 
need to be adjusted. This can be done using several 
learning algorithms. One of the most popular learning 
algorithms is back propagation. In back propagation, 
a gradient descent is implemented to ensure that 
the direction of learning and rate of learning is 
appropriate.

In the field of hydrology, ANN modelling has 
been used for a variety of purposes, particularly in 
water quality applications, Conrads and Roehl (1999) 
used ANN models to simulate salinity, temperature, 
and dissolved oxygen. Hsu et al. (1998) used ANN for 
streamflow forecasting. Coulibaly et al. (2001) applied 
the temporal neural networks to hydropower reservoir 
inflow forecasting. Risley et al. (2003) estimated water 
temperatures in small streams in western Oregon 
using an ANN model. More recently, Belanger et al. 
(2005) compared two models of water temperature: 
artificial neural networks and multiple linear regression 
using air temperature and discharge as independent 
variables. Of these two models, results indicated that 
both approaches were equally good in predicting daily 
stream water temperature with RMSE of 1.06°C for 
the regression model and 1.15°C for the ANN model.

ANN has often been criticized based on the 
fact that the contribution of the input variables in 
predicting the output is difficult to disentangle within 
the network, and explanations regarding the relative 
importance of each independent variable are not 
as straightforward as in the case of linear regression 
methods (Olden and Jackson, 2002). However, trained 
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networks have been shown to perform very well within 
the interpolation range of the training data set and 
a number of packages exist that allow for relatively 
easy implementation of the approach (e.g., Neural 
Networks toolbox, The Mathworks, 2007; Artificial 
Neuronal Network 1.00, logiware).

k-Nearest Neighbours (k-NN)

A k-NN is a method that consists of finding, for a 
given point in time, a small number of neighbours 
nearest to this value, and the prediction is estimated 
based on these neighbours. The key steps in the k-NN 
algorithm are:

Step 1. Compile a feature vector: the vector X consists 
of values of the selected input attributes (e.g., lagged 
water temperature, lagged air temperature and 
streamflow data) for which we are trying to find the 
k-Nearest Neighbours (usually k<4);

Step 2. Find the weighted sum of the attributes: since the 
scales of water and air temperature units are different 
than that of streamflow, the weighted attributes can be 
generalized as a weighted standardized norm (N)

 Nattributes

N =  Σ  wiXi (9)
 

i=1

where wi are the weights and Xi are the vectors of 
standardized (i.e., subtract mean value and divide by the 
standard deviation) values of the selected attributes. 

Step 3. Calculate the Euclidean distance between the 
norm of the day of interest and the norm of all other 
available data: For two norms (Nj1,Nj2) calculated using 
vectors Xj1 for the day of interest and Xj2 (j2 = 1…,j1 –1, 
j1 +1,…,m) for the m other days in the data base, the 
Euclidean distance (δ) is defined as 

 Nattributes

 δ(Nj1, Nj2)= |Nj 1 – Nj2| = Σ wi •|Xi,j1 – Xi,j2| (10)
 

i=1

Step 4. Sort the distances δ in ascending order and 
retain only the first k nearest neighbours: the strategy 
for choosing the optimal k is to try several successive 
values of k (e.g., 2, 3 and 4) and to select the combination 
for which the model gives the best prediction. 

Step 5. Assign weight to each of the k neighbours, thus 
the predicted value of the final output is computed 
as a weighted sum of the values of neighbouring 
observations.

The k-NN is an approach that has been used in 
hydrology to model rainfall-runoff processes and has 
been compared with autoregressive moving average 
models with exogenous inputs (ARMAX) (Karlsson 
and Yakowitz, 1987; Yakowitz and Karlsson, 1987). 
In agreement with the conclusions reported by the 
aforementioned authors, Galeati (1990) showed that 

Figure 1. Artificial Neural Network representation.
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the k-NN method provides lower mean square error 
predictions of daily mean flow than an autoregressive 
model with exogenous inputs (ARX). Recently, 
Benyahya et al. (2007a) compared the predictive 
capability of periodic autoregressive model (PARX) 
and k-NN to model weekly water temperature of the 
observation period (1984-2004) in the Nivelle River, 
France. It was concluded that PARX is better suited to 
model the periodicity in autocorrelations; nevertheless, 
k-NN is equally an interesting statistical water 
temperature model. The simulations on the Nivelle 
River yielded a relatively small root mean square error 
of 1.20°C. However, one potential drawback of k-NN, 
and other non-parametric methods such as ANN, 
is that they do not produce a parametric function of 
the model and in such case, any given condition not 
previously observed in the historic record cannot be 
predicted or simulated. 

Conclusions

This paper provided an overview of the existing 
methods used in water temperature modelling and 
compared their relative advantages and drawbacks. 
Both the deterministic and statistical models are 
relevant depending on the problem under investigation 
and data availability. Statistical models, which are the 
main focus of this review, are important tools for the 
prediction of water temperature based on few input 
variables. It was found that most of the statistical models 
reported in the literature are based on simple and 
multiple linear regression as well as logistic function. 
These models have been effective in predicting river 
water temperature for longer time scales, i.e., weekly, 
monthly and using annual means. For shorter time 
scales, stochastic models have been more effective in 
the prediction of river water temperatures. As noted, 
most statistical methods reviewed in this study present 
advantages and disadvantages in different contexts 
(Table 1). The selection of a particular statistical model 
depends on the modelling objective as well as the 
type of data available. In situations when the water 
temperature modelling is carried out at daily time steps 
and when air temperatures are the only available data, 
the so-called “stochastic” models have been shown to 
perform well. AR models applied on residuals (i.e., the 
non-seasonal component, often called the stochastic 
component in the literature) are powerful tools that 

often produce root mean square errors (RMSE) that 
are less than 1°C. Users should be reminded that 
stationarity is assumed to exist in the time series of 
residuals when using this approach.

More recently other statistical approaches have 
been applied and these statistical models show 
promising results. For example, when periodicity is 
observed in the correlation structure, periodic models 
have been proposed. These models, such as PAR and 
PARX models, are extensions of commonly used 
ARMA models with the difference that the former use 
periodic parameters. Despite of their parameterization, 
the periodic models were shown to be an interesting 
tool for modelling weekly water temperatures based on 
their capability to model periodicity in autocorrelations 
(Benyahya et al., 2007a; b). 

The literature shows that non-parametric models 
are also a promising area of predictive statistical water 
temperature modelling owing to their capability in 
simulating the complex nonlinear relationships 
between response variable and environmental 
variables. Although non-parametric methods do 
not provide users with a conventional mathematical 
function, many readily applicable algorithms exist 
and their implementation has become easier with 
the advent of powerful computing technology. Users 
should be reminded that these approaches are site 
specific, as is the case in many statistical modelling 
approaches and their performance capability in the 
extrapolation domain is usually limited.

Aside from the statistical structure of the data, 
the selection of a model may be driven by regional 
considerations. For instance certain statistical 
approaches may perform better in specific climatic 
contexts (e.g., rivers with freezing periods versus 
warmer rivers). A comparative study of water 
temperature models using a range of sites with 
different hydroclimatic conditions would be useful.

In conclusion, this literature review shows that 
the selection of an appropriate statistical water 
temperature model depends on the comparison of 
advantages and disadvantages of different methods 
in a particular context. The context is defined by the 
following factors:

• Time step required (e.g., daily, weekly, monthly, 
etc.);

• Length of time series;
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• Statistical properties of time series (e.g., 
seasonality, normality of residuals, etc.);

• The need to formalize the relationship between 
independent variables and water temperature; 
and

• Hydroclimatic specificities.

Although most of the literature describes statistical 
model implementations in a simulation mode, these 
approaches could be used in forecasting as well, 
especially where forecasts of input variables exist 
(i.e., air temperature and/or flow). By developing a 

Modelling Approach Advantages Disadvantages Examples of Water Temperature 

Modelling Applications

Linear regression Straightforward in 
application

Less appropriate when the 
assumption of a linear relationship 
cannot be verified.

Pilgrim et al. (1998)
Erickson and Stefan (2000)
Ahmadi-Nedushan et al. (2007b) 

Logistic function Appropriate when nonlinear 
relationship is observed in 
the data

Performed poorly in  some 
cases when studying daily water 
temperature time series

Mohseni et al. (1998)
Caissie et al. (2001)
Webb et al. (2003).

Stochastic model Appropriate when  studying 
daily water temperature time 
series.  Focuses on adequate 
modelling of residuals.

Appropriate when residuals are 
stationary 

Cluis (1972)
Caissie et al. (1998)
Caissie et al. (2001)

Periodic 
Autoregressive 
models

Can capture the periodic 
autocorrelation in periodic 
time series

Necessitates the fitting of a greater 
number of parameters, which may 
violate the principle of parsimony.

Benyahya et al. (2007a; b)

Artificial Neural 
Network

k-Nearest 
Neighbours

No assumptions concerning 
statistical distributions and 
relationships are required; 
Capability in picking up 
the complex nonlinear 
relationships between input 
and output variables
Completely data-driven.

Relatively more costly in 
computational time;
Does not provide users with a 
conventional mathematical function 
and physical interpretation. Cannot 
predict conditions outside of 
historic range. 
Requires relatively long time series.
Dependency on the selection of a 
“good value” for k

Risley et al. (2003)
Belanger et al. (2005)
Galeati (1990)
Benyahya et al. (2007a)

Table 1. Advantages and disadvantages of statistical models based on approach and identification of related 

studies.

predictive relationship between water temperature 
and environmental variables, users could estimate 
how stream temperatures are likely to respond to 
these variables, and therefore how the health of many 
aquatic species could be threatened. Statistical models 
have played an important role, in the past, in studying 
water resource and fisheries management issues. It is 
believed that with the new generation of statistical 
models this approach will remain important, mainly 
because water temperature can be predicted with fewer 
input parameters than with deterministic models.
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