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Abstract
Bathymetric maps produced from remotely sensed imagery are increasingly common. How-
ever, when this method is applied to fluvial environments, changing scenes and illumination
variations severely hinder the application of well established empirical calibration methods
used to obtain predictive depth–colour relationships. In this paper, illumination variations
are corrected with feature based image processing, which is used to identify areas in an
image with a near-zero water depth. This information can then be included in the depth–
colour calibration process, which results in an improved prediction quality. The end product
is an automated bathymetric mapping method capable of a 4 m2 spatial resolution with a
precision of ±±±±±15 cm, which allows for a more widespread application of bathymetric map-
ping. Copyright © 2006 John Wiley & Sons, Ltd.
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Introduction and theoretical considerations

The use of remotely sensed pixel colour to map water depth in fluvial environments by the application of calibrated
depth–colour relationships is well documented. Multispectral (Lyon et al., 1992; Winterbottom and Gilvear, 1997;
Marcus, 2002; Whited et al., 2002; Marcus et al., 2003), colour (Westaway et al., 2003) and greyscale (Winterbottom
and Gilvear, 1997) imagery have all been used for bathymetric mapping. For all three image types, the bathymetric
mapping methods rely on the same theoretical basis. The physical principle underlying the measurement of flow depth
from brightness levels in imagery is the Beer–Lambert law, which describes the absorption effect as light passes
through transparent media. If a beam of light with an incoming intensity Iin passes through a transparent medium of
thickness x, the remaining outgoing intensity Iout can be written as (Serway, 1983)

Iout = Iin e
−cx (1)

where c is the rate of absorption of the medium, which varies according to properties of the medium, such as turbidity,
and the frequency of the incident light. The intensity of light therefore decreases as an exponential function of
the distance passed through the medium. In the case of digital imagery, the light intensity is captured as discreet
brightness levels. The term Iout will therefore be the final observed brightness levels in the image and the term Iin will
be the initial brightness of the bed before the passage of light through the water column. This explains why shallow
submerged areas have a brighter colour than deep submerged areas.

In the above, bathymetric mapping relies on the determination of the constant c and the initial brightness Iin. The
calibration procedures for the determination of these parameters can be divided into two groups. First, empirical
methods have used geolocated field measurements of depth in a regression model to establish depth as a function
of colour (Winterbottom and Gilvear, 1997; Marcus, 2002; Westaway et al., 2003; Fonstad and Marcus, 2005).
Second, physical methods have used water sampling to predict the absorption of light by the water column (Lyon
et al., 1992). The empirical method is the most cited in published work and will be the basis for the work in this paper.
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The success of calibration methods and the quality of the predictions are most affected by the type of imagery that
has been used. Generally, studies using multispectral imagery report better prediction quality. Multispectral imagery
allows for the use additional image bands to classify bottom types (i.e. sand, gravel, algae) and thus construct depth–
colour relationships for each bottom type, which lead to improved results. For example, Winterbottom and Gilvear
compared results of multispectral and grey scale imagery (Winterbottom and Gilvear, 1997). They obtained a model
with R2 = 0·67 in the multispectral case and R2 = 0·55 in the greyscale case. Other researchers obtained even better
results from multispectral data, the highest reported value being a prediction quality R2 of 0·95 (Lyon et al., 1992).
Multispectral imagery is therefore normally considered as the method of choice for bathymetric measurements. How-
ever, standard colour imagery still retains certain advantages over multispectral imagery. Recent modelling by Legleiter
et al. (2004) suggests that band ratios calculated from colour imagery can be as effective as multispectral imagery.
Additionally, the cost of a multispectral image survey is still much greater than that of a standard colour equivalent
(Roberts and Anderson, 1999). Furthermore, standard colour imagery can attain centimetre scale resolution whilst
multispectral imaging sensors are still generally limited to metre scale resolution. Carbonneau et al. (2005) and
Carbonneau et al. (2004) have shown that high resolution colour imagery can be used to carry out fully automated
measurements of grain size in dry exposed areas. If reliable depth estimates could be made with the images used to
measure grain size, a very powerful tool capable of automated measurements of both depth and grain size could be
developed. Such a remote sensing approach to river characterization could have a major impact on future research in
all fields interested in fluvial environments.

The use of high resolution imagery for automated depth measurement has specific difficulties. In particular, if
centimetre resolution airborne imagery is collected at the catchment scale, this necessarily implies that a very large
number of photographs, hundreds to thousands, will be required to cover the whole study area. In such cases, the use
of digital images to measure light intensity value can be problematic. As described by Fonstad and Marcus (2005),
when applying bathymetric models to imagery, it is necessary to measure the light intensity with the digital number of
each image pixel. Therefore, photography principles such as aperture and exposure times should be considered, since
these factors control the conversion of actual light intensity in the field to digital image numbers. Of particular
importance is the case where camera exposure and aperture settings are variable within the image data set since the
conversion from light intensity to digital numbers will vary accordingly. In the case of large image data sets, this
variability can be problematic since identical lighting conditions in the field may not be represented by identical
digital image numbers in the imagery. There is a significant body of literature describing the physics of bathymetric
mapping (Lyon et al., 1992; Lyon and Hutchinson, 1995; Legleiter et al., 2004). However, these methods all assume
that identical light conditions in the field will produce identical image brightness levels. Therefore, the issues of
variable camera apertures and exposures leading to variable image illumination must be addressed separately. This
specific problem has not been discussed in the literature owing to the recent availability of high resolution image data
sets comprised of thousands of images. The aim of this paper is therefore to develop a bathymetric mapping method
that can operate with thousands of images and that incorporates a correction factor for variable camera conditions.

Approach
Since achieving a perfectly constant camera exposure and aperture over very large areas is not possible due to
inevitable changes in weather conditions and scenery, the most practical solution to this problem is correcting the
brightness levels in the imagery with an image processing application. The most obvious solution to the problem is to
use the standard image processing method of histogram matching to correct the base illumination differences (Castleman,
1996). Histogram matching operates by comparing the initial image histogram that is to be corrected to a reference
histogram. The goal of the process is to redistribute the initial histogram bin values in order to reshape the initial
histogram to the shape of the reference histogram. This process differs significantly from linear histogram stretching in
that a linear scaling factor is applied to both the brightness values of the histogram bins and the number of counts
within each bin. For large image data sets, this method can be implemented in two ways. The first option is to match
all the image histograms to a reference histogram. The second is to match each image histogram to that of its
neighbour in the data set. The difficulty with the first option is the determination of the reference histogram. If the
reference histogram and the image histogram differ too much, the results will be poor. In the case of high resolution
imagery in fluvial environments, changes in the image scene will lead to histograms having different shapes independ-
ently from the level of base illumination. For example, Figure 1 shows image histograms with their associated images.
The images in Figure 1(A) and (B) are separated by 80 m and taken at a 1 s interval. Despite this close proximity in
space and time, the images have important differences due to the rapidly changing scenery. In this case, a dry exposed
bar has developed along the flight path in Figure 1(B). As a result of the appearance of this dry bar which has a higher
brightness level, the camera exposure was automatically reduced to compensate. The consequence is that Figure 1(B)
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Figure 1. Example of histogram matching failure. (A) Histogram and image having very little dry area. (B) Histogram and image
with lower base illumination and more dry areas. (C) Result of matching histogram A to histogram B.

is darker thus showing a typical example of the type of problem this work seeks to correct. This change in scenery and
illumination has important consequences on the image histogram that need to be considered before applying a histo-
gram matching correction. Dry exposed areas have higher brightness levels than other areas and their spatial extent in
Figure 1(A) is much lower than that in Figure 1(B). Therefore, these scenes should have different histograms and
scaling them on to a single histogram is unlikely to be meaningful. For example, Figure 1(C) shows the results of
using the histogram in Figure 1(B) as a reference histogram for application to Figure 1(A). The resulting histogram
and image clearly show the failure of the matching process. There has been creation of an artificial dry area mode at
brightness levels of 150. In the image, an area of the wetted perimeter has been significantly altered as a result of the
artificial dry area peak in Figure 1(B). This has created a false dry bank. It is therefore clear that, given the variety of
histogram shapes that can occur in scenes of fluvial environments within the same river, selection of a universal
reference histogram is highly problematic.
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In the case where neighbouring images have similar histograms, the second histogram matching option, which
matches neighbouring histograms, gives visually pleasing results. Since it smoothes out local differences in illumina-
tion in neighbouring images, local visual inspection of the results will show a uniform base illumination. However, at
a larger scale, gradual and slowly varying illumination differences can persist, which can cause errors in bathymetric
mapping. Therefore, the second option of histogram matching does not seem more appropriate if depth measurements
are required from the image data set. Additional research is therefore required to adapt existing depth–colour calibra-
tion methods to the specific problems associated with large image data sets in fluvial environments.

An alternative form of illumination correction can be developed by understanding the physics of the process.
Equation (1) shows that two parameters must be calibrated for successful bathymetric mapping: the constant c and
the incident illumination Iin. Since the value of c, the rate of light absorption, is a function of water turbidity and light
frequency, it can be reasonably assumed that c is constant for the whole system. In practice, allowing c to vary is
one way of compensating for variations in illumination (i.e., c can be varied to give an empirically justifiable form
of Equation (1)). However, this is not a physically correct approach. Here, we focus attention on the incident
light intensity term Iin. Since brightness decreases with increasing depth, it can be reasoned that the initial brightness
levels can be obtained if one conceptually removes the water medium to look at the brightness level of the bed.
In such a case, one is left with wetted clasts that are not submerged. If the spectral properties of such clasts can
be identified, and if we assume that they are constant for the whole system, a semi-empirical bathymetric mapping
approach should be possible that automatically corrects for illumination conditions. The first step is to identify
unsubmerged wetted clasts in an image with automated feature based image processing. Such clasts can be found in
an image by locating the wet/dry interface using image classification. Therefore a good quality image classification
will be required to insure that the wet/dry interface can be located. Second, the brightness levels of these clasts can
be used as the Iin term in Equation (1). Third, an empirical approach can be used to calibrate the rate of absorption
constant c.

Methods

Airborne digital imagery acquisition
The work discussed in this paper uses a set of high resolution airborne imagery. Data were obtained for the main
branch of a gravel bed salmon river in Quebec, Canada: the Sainte-Marguerite river. The survey covered the full
80 km of the main branch where the channel width varies from a few metres at the headwaters to approximately 80 m
at the mouth. In August 2002, a helicopter survey was carried out during the summer period of low flow. The XEOS™
system, developed by GENIVAR inc., was used to obtain plan view digital imagery of the entire 80 km study area.
The helicopter survey was carried out at an altitude above the bed of 155 m in order to obtain digital imagery with a
ground resolution of 3 cm (1:350 scale). Image format was 3008 pixels × 1960 pixels in the standard visible bands of
red, green and blue. Images were collected at 60 per cent overlap to allow for photogrammetric work to be carried out
in the future. Two days were required to complete the surveys yielding 4184 images. Flights were carried out between
10 am and 3 pm with weather conditions being generally cloudy and dry with sunny spells. Figure 2 shows a greyscale
example of the resulting imagery. Since the images have 60 per cent overlap, full coverage of the 80 km study reach
can still be achieved by taking every other image. Therefore 2092 images were used in this study.

Field data
Calibration and validation data for the depth measurement method were collected with a Leica 500 RTK GPS capable
of 3–5 cm precision in both horizontal and vertical directions. Since no tributary brings a major input of suspended
sediment that could alter the rate of absorption term, calibration measurements were concentrated on a reach of
approximately 250 m length. First, water surface measurements were taken along the study reach at approximately
5 m intervals in order to model the elevation of the water surface. This yielded 50 points, which were input into a
regression plane to define the water surface elevation. Second, 1500 GPS measurements were taken in the wadable
area of the flow. The resulting elevations were subtracted from the water surface to obtain water depth. 500 of these
points were set aside for validation purposes and 1000 were used in the model calibration.

Each depth obtained from a GPS coordinate was related to an image location by georeferencing the images
covering the study site. The 250 m study site was covered by four images. Within these images, a total of 24 control
points were laid out before the image acquisition flight. These control points were surveyed with the GPS and
georeferenced with ArcMap software from ESRI. The horizontal precision of the georeferencing was estimated at
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Figure 2. Sample image from the St-Marguerite river study site located at 48·38° N 70·20° W.

±27·8 cm RMS. The georeferencing process allowed for the measured depth to be related to exact image coordinates
so allowing the modelling process to begin.

Image classification
The automated image classification algorithm discussed by Carbonneau et al. (2004), capable of identifying dry areas
in an image, was expanded to perform automated classifications of vegetated areas and wetted areas. The accuracy of
the classification was estimated by taking 10 images and comparing the automated classification with a manual
classification. Image pixels were then labelled as 1 for a correct classification and 0 for a false classification. This
resulted in approximately 80 per cent of pixels being correctly classified. Given that the identification of the wet/dry
interface is pivotal to the entire correction procedure, a higher quality classification was required. Therefore, a semi-
automated interface was designed in the MATLAB environment to allow for a rapid and efficient editing process. This
semi-automated interface was designed to manage repetitive tasks such as image uploading and saving while taking
advantage of human pattern recognition skills to identify classification errors. The interface functions by displaying
both the image and the raw classification image. The user can then rapidly correct classification errors by drawing
directly on the image. With this highly efficient interface a single user can edit approximately 200 image classifica-
tions per day. Therefore approximately 2 weeks were required to fully edit the 2092 image classifications.

Rate of absorption calibration
Equation (1) was used as the basic model for calibrating the depth– colour relationships. Since no important source of
suspended sediment occurs along the study area, it was assumed that the rate of absorption is constant for the whole
data set. The rate can be calibrated with the field data by plotting the calibration data on semilogarithmic axes and
applying a linear regression model. However, some practical considerations must be given before assigning a bright-
ness value to a depth measurement. The first factor that must be considered is colour. Since rate of absorption is a
function of wavelength (i.e. colour), the optimal colour, or colours, must be selected among the three available colour
bands. Winterbottom and Gilvear (1997) investigated bottom reflectance, the opposite of absorption, as a function of
water depth and wavelength. If we consider the three wavelengths of ≈600 nm for red, ≈500 nm for green and
≈400 nm for blue, the results of Winterbottom and Gilvear show that, for shallow environments, the red colour band
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is the most sensitive to depth variations, with the green band having some sensitivity and the blue band having poor
sensitivity to depth variations. Legleiter et al. (2004) have also found that the red colour band is most suitable for
shallow environments. Visual examination of our imagery clearly confirmed these findings, showing that the red band
is most sensitive to depth change. Furthermore, examination of the blue band revealed that it was insensitive to depth
variations. It was therefore decided to proceed with the red band in the analysis.

The second practical consideration that needs to be addressed is bed material colour variations. Since the model
assumes that brightness is a function of depth, local variations in bed material colour and shading are not accounted
for and thus introduce noise to the model. For this reason, single pixel brightness values are not used and some form
of local averaging within the wetted perimeter is employed. However, no guidelines exist for the selection of the
appropriate window size for averaging. It was therefore decided to test the effect of increasing the averaging area on
the final model quality. Therefore, depth–colour calibration relationships were examined for five averaging areas:
1 × 1 pixel (i.e. no averaging), 3 × 3 pixels, 9 × 9 pixels, 33 × 33 pixels and finally 66 × 66 pixels. These averaging
windows were only applied to the wetted perimeter. In each case, the image classification was used to exclude all
pixels that were not in the wetted perimeter. This was done to insure that no dry exposed bed brightness values were
erroneously used in the calibration relationship. Given the exclusion of non-wetted areas, window sizes beyond
66 × 66 pixels were impractical since the size of the window becomes comparable to the width of the channel at the
headwaters. Therefore, window sizes larger than 66 × 66 pixels were considered as too large to adequately capture
depth variations and were excluded from the analysis.

Once the optimal averaging window is identified, an initial calibration model was constructed by regressing
observed depth versus averaged pixel brightness, without accounting for the brightness levels of unsubmerged wetted
clasts, thus yielding a model in the form of Equation (1). It was validated using the depth measurements that were set
aside for this purpose. This initial model will then be used to assess the effectiveness of the unsubmerged wetted clast
colour calibration.

Unsubmerged wetted clast colour calibration
The empirical process used to calibrate the colour of an unsubmerged wetted clast was replaced with a feature based
image processing approach. The process starts by using the classification data to identify two distinct features in the
image: the dry areas and the wetted areas. Edge detection with a standard Sobel operator (Castleman, 1996; Richards
and Xuiping, 1999) applied to these two areas allows for the identification of the wet/dry interface in the image. It is
then assumed that the pixels in the wetted perimeter that are immediately adjacent to the wet/dry interface are at near-
zero depth and therefore represent the wetted clast colour in the absence of inundation. The average value of these
pixels is then taken as the constant, Iin, in Equation (1). To obtain a valid calibration, field calibration points located in
different images need to be plotted in the same regression model. Therefore, the obtained value for Iin is used to
calculate the magnitude of a linear histogram shift applied to each image and designed to bring the value of Iin to a
standardized 128. This value was arbitrarily chosen to be in the centre of the 0–255 brightness range. This is in effect
an illumination correction. The final calibration model was therefore established from corrected images where the
unsubmerged wetted clast colour has been used to perform an illumination correction.

Once this image processing step is complete, another experimental analysis of quality versus averaging window size
was carried out in order to fully assess the effect of this new calibration procedure. The window sizes used in this test
were again 1 × 1, 3 × 3, 9 × 9, 33 × 33, 66 × 66.

Bathymetric map production
If the results of the calibration give reliable results for c, bathymetric maps can be produced. These maps
were produced by isolating the shallow wetted area with the image classification. Then, a smoothing window,
whose dimensions were determined experimentally, is applied to reduce local noise effects. Feature based image
processing was applied to determine the value of Iin. Finally Equation (1) was used with the calibrated value for c,
Iin = 128, and the rescaled image data, to produce the final bathymetric maps. Since 2092 images must be processed,
data storage is an issue. It was decided to store the depth maps as jpeg eight-bit (0–255) greyscale images
and therefore benefit from the jpeg compression. To conform to the eight-bit format, the calculated depths
were converted to centimetres. This allows for a range of depths of 0 –255 cm, which is appropriate for shallow
fluvial environments. The output of the bathymetric maps was limited to depths where the bed is still visible. In
the case of the St-Marguerite river, this is approximately 1·5 m. Therefore, any values found to be deeper than 150 cm
were set to 255 cm. Points in the resulting bathymetric maps with a value of 255 should therefore be considered to
be deeper than 150 cm.
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Table I. Regression quality of depth vs brightness as a function of the size of
the averaging window with and without illumination corrections

R2 (without R2 (with
Window size illumination correction) illumination correction)

1 × 1 0·03 0·14
3 × 3 0·05 0·15
9 × 9 0·08 0·19
33 × 33 0·14 0·32
66 × 66 0·21 0·49

Results

Table I shows the results of the averaging area testing, which was conducted for both the conventional and un-
corrected cases. It can be seen that better results are obtained with the biggest averaging area, 66 × 66. This
corresponds to 2 m × 2 m on the ground, and is used for the development and application of the calibration results.

Conventional calibration approach
Figure 3(A) shows the associated regression plot for the 66 × 66 window case. Multiple parallel trends can be seen in
this figure, which explains the poor R2 results in Table I. In Figure 3, the data from each individual image was plotted
with different symbols, which clearly shows that each trend can be associated with a separate image. If we attempt to
calibrate this uncorrected data, calibration Equation (1) takes the following form:

Ired = 109·5 e−0·596H (2)

where Ired is the brightness level in the red band and H is the depth. In Equation (2), the incident light value (Iin) is
109·5 and it should be noted that this value was obtained as the intercept of the regression. If Equation (2) is applied
to the imagery and predicted depths are assessed using the validation data (Figure 3(B)), the presence of multiple
trends causes a very large scatter and the estimates of depth are biased to −12 mm and have a precision of ±367 mm.

Illumination-corrected approach
In relation to sensitivity to averaging window size, illumination correction results in a substantial increase in model
quality (Table I). Figure 4(A) shows the associated regression plot for the 66 × 66 pixel case. It can be seen that this
correction has collapsed the multiple trends shown in Figure 3(A) on to a single relationship. The optimal depth–
colour relationship obtained after the standardization of the unsubmerged wetted clast colour was

Ired = 128 e− 0·387H (3)

where Ired is the brightness level in the red band and H is the depth. In Equation (3), the incident light value (Iin) is 128.
In this case, this value was preset by the illumination correction procedure. Once the optimal model has been
established, the 500 points set aside for validation were used to assess the quality of the depth predictions. Figure 4(B)
shows the results. It can be seen that the addition of the unsubmerged clast calibration has considerably reduced the
scatter. The resulting bias has been reduced from −12 mm to −8 mm, and the precision improved from ±367 mm to
±155 mm. When taken with the improvement in R2 from 0·21 to 0·49, this suggests that the correction method is an
excellent development in allowing application of the semi-empirical approach in (1) to multiple imagery.

Bathymetric maps
This optimal model can then be used to produce bathymetric maps for the whole image set. The value for the rate of
absorption is taken from Equation (3) as being equal to 0·387 and the feature based image processing method is
applied to each image to determine the value of the initial light intensity, Iin. The processing time needed to produce
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Figure 3. Depth–colour modelling without calibration of the unsubmerged wetted cast colour. Four distinct symbols are used to
differentiate between the four different source images. (A) Calibration model for a 66 × 66 averaging window. (B) Validation of the
model shown in (A).

the bathymetric maps for the set of 2092 images, excluding the time require to edit the image classifications, was
approximately 24 hours on a PC computer clocked at 3 GHz. Figure 5 shows an example of a bathymetric map.

Discussion

Comparisons of Figures 3(B) and 4(B) shows an improvement in prediction quality. The scatter remaining in
Figure 4(B) can partially be attributed to resolution differences between the bathymetric map data and the GPS
validation data collected in the field. Since the field data was collected with a centimetre precision GPS system, the
depth measurements were highly localized and did not account for any depth variability in the area adjacent to the
sample. The final resolution of the bathymetric mapping method was 4 m2; therefore, the difference in resolutions
between field data and method output will induce additional variability in the validation results. Better results could be
achieved in the future if the validation data and the outputs have similar spatial resolutions.

Two additional sources of error should be mentioned for their potential impact on basin scale depth measurements.
First, as stated earlier, the process described in this paper assumes that the rate of absorption constant c is constant
throughout the system. One notable exception can be found to this rule: surface turbulence such as white water rapids.
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Figure 4. Depth–colour modelling with calibration of the unsubmerged wetted cast colour. Four distinct symbols are used to
differentiate between the four different source images. (A) Calibration model for a 66 × 66 averaging window. (B) Validation of the
model shown in (A).

In such cases, the water surface essentially becomes opaque and thus all information concerning the riverbed is lost.
An examination of the data set used in this paper suggests that white water occupies less than 2 per cent of the entire
wetted surface. Therefore, the authors believe that these areas can simply be removed from the analysis without
causing a significant loss of information. Another source of error that should be considered is bank shading. Depend-
ing on the solar elevation at the time of the flight and the orientation of the channel, banks can be more or less shaded.
This has an impact on bathymetric measurements, since the darkened shaded areas will falsely be interpreted as being
deeper. Operational procedures for aerial surveys typically restrain the minimum solar elevation angle to 35– 45°. This
limits potential shading effects. However, it should be noted that heavily vegetated banks do cause additional error,
which will probably always be part of image based bathymetric mapping in fluvial environments.

Despite the remaining error, the overall precision of the method went from ±367 mm to ±155 mm, a considerable
improvement. In addition to these gains in terms of precision, another noticeable improvement can be seen in the near
elimination of negative depth predictions. In cases where the brightness levels are higher than the estimated initial
brightness (the Iin term in Equation (1)), the depth will be predicted as being negative. If the conventional calibration
model is used, the poor quality of the calibrated value for the Iin term of Equation (1) will lead to a high number of
negative depth predictions as seen in Figure 3(B). However, when the Iin term is directly calibrated, the number of
negative depth predictions is greatly reduced. Some negative predictions remain because the process identifies the



1422 P. E. Carbonneau et al.

Copyright © 2006 John Wiley & Sons, Ltd. Earth Surf. Process. Landforms 31, 1413–1423 (2006)
DOI: 10.1002/esp

Figure 5. Bathymetric map obtained from the application of Equation (3) to the wetted area of Figure 2.

mean value of unsubmerged wetted clasts and thus variance around the mean may lead to negative depth predictions.
However, Figure 4(B) shows that this effect is infrequent, and the low bias value of −8 mm supports this observation.
Furthermore, examination of Figure 3(B) shows certain predicted depth values in the vicinity of 1·5 m corresponding
to observed depths in the vicinity of 1 m. These values are serious overestimations of depth. Figure 4(B) shows that
these overestimations of depth have been eliminated by the illumination correction procedure.

Conclusion

The depth mapping results presented here are less precise than field surveys carried out with GPS or echo sounding
equipment. However, if the results of the entire survey are considered, the combination of scale and resolution is
unprecedented. Each depth measurement is valid in a 66 × 66 pixel area, i.e. 4 m2, corresponding to the smoothing
window. The image classification information can be used to measure the total wetted area in the 2092 image survey
as 2·3 km2. This means that we have 589 296 effective depth measurements regularly spaced along both streamwise
and cross-stream directions of the channel. Such high resolution and large scale data coverage offsets the lower
precision when compared to labour intensive field measurements. Therefore, such an application of feature based
image processing to the calibration of depth–colour models, never reported in the literature, should prove useful to
other studies seeking to apply remote sensing in fluvial environments and to extract the largest possible amount of
information from the imagery.
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