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Abstract

Supportive breeding is being increasingly used as a measure to reduce the short-term probability of extinction of
populations with highly reduced abundance relative to historical levels. In this paper, we provide a conceptual
framework and analytical tools to compute changes in inbreeding coefficient (F) in the case of supportive breeding
over any number of generations. The dynamics of inbreeding coefficients were investigated by means of a system
of recurrence equations. We focussed on quantifying the dynamics of F for specific combinations of parameter
values in terms of the effects of captive population census size, refreshment rate of breeders in captivity, scale
of supplementation program, and migration rate. We observed that supplementation did not always result in
substantial inbreeding increment and several conditions lowered overall inbreeding relative to control situations
without supplementation. The census size of captive populations was the single most important controllable
parameter determining the genetic consequences of supportive breeding. While the proportion of captive breeders
brought into captivity from the wild bore a complex relationship to inbreeding coefficient dynamics, the results
indicated that managers should generally aim at high refreshment rates (that is, large proportions of their captive
stock originating from the wild). This is especially important when a small captive population is expected to
contribute large numbers of breeders to the supplemented population. The analysis also showed how supplemented
populations connected to a large metapopulation through gene flow recover from the genetic risks of inbreeding
due to supportive breeding program more quickly than isolated populations. The results of this study join those
of an increasing number of investigations showing that supportive breeding does not always increase inbreeding,
and may even decrease it in several circumstances. However, supportive breeding systems are complex, and
results such as presented here should not be used in isolation, but in consideration of other issues such as the
consequences on long-term fitness of wild individuals.

Introduction

Supportive breeding is being increasingly used as a
measure to reduce the probability of extinction of
populations with highly reduced abundance relative
to historical levels (Ryman et al. 1995). This supple-
mentation method is also routinely used in fisheries
management in order to sustain exploitation (Waples
and Do 1994). Typically, supportive breeding implies
that potential parents are caught in a wild popula-
tion and brought into captivity (e.g. fish hatchery)
to increase reproductive and reduce mortality rates,

respectively. Following breeding, some or all of the
offspring are returned to the same wild population.
This cycle may be repeated over several generations.
Supportive breeding may therefore potentially raise
the census size of wild populations while circum-
venting genetic risks associated with admixture of
genetically distinct populations, such as outbreeding
depression (Utter 1998; Gharrett et al. 1999; Marshall
and Spalton 2000).

Highly skewed family size between wild and
captive breeders may, however, result in an increased
rate of inbreeding as measured by inbreeding coef-
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ficients F (Crow and Kimura 1970). Inbreeding
effective size NeI was first used by Ryman and Laikre
(1991) to measure the effect on F of a single event
of supplementation from supportive breeding. This
analysis showed that any gain in census size had to
be traded against reduction in effective size, but did
not account for the fact that census size increments
at a given generation increase effective sizes at the
next generation. Later, Ryman (1994) and Ryman
et al. (1995, 1999) circumvented this problem by
substituting the variance effective number (NeV, Crow
and Kimura 1970) for NeI. The computation of NeV
expressly involves the size of the next, post repro-
duction, generation and, consequently, NeV changes
appear one generation ahead of changes in NeI (Crow
and Kimura 1970). Until very recently, the impact
of supportive breeding had been evaluated analyti-
cally only for a single supplementation. However, the
inbreeding effect of multiple generations of supple-
mentation was explored by simulations for the case of
Pacific salmonids, Oncorhynchus spp. (Waples and Do
1994).

In this paper, we provide a conceptual frame-
work and analytical tools to compute changes of
inbreeding coefficient F in the case of supportive
breeding over any number of generations. To achieve
this, we consider supportive breeding programs as
transient systems of two populations, captive and
wild, linked together by migration. The inbreeding
dynamics within such systems are modelled mathe-
matically as recurrence equation systems. We pri-
marily focus on comparing the dynamics of F under
various supportive breeding procedures, given stable,
declining and expanding demographic scenarios that
comprise pre-supplementation, supplementation and
post-supplementation components. The main para-
meters considered are captive population census size,
refreshment rate of breeders in captivity, scale of
supplementation program, and migration rate. As
such, this study complements in several ways other
recent efforts to appraise the genetic consequences
of supportive breeding over multiple generations.
Namely, Lynch and O’Hely (2001) developed a
theoretical framework for assessing the impact of
program design on genetic fitness (supplementa-
tion load) of natural populations. Wang and Ryman
(2001) also used recurrence equations to assess the
consequences of multiple generations of supportive
breeding on the rates of inbreeding and genetic drift.
However, that study primarily focussed on exploring
the consequences of different models for selecting

captive breeders as well as that of variance in family
size, and did not systematically investigate various
demographic scenarios of supplemented populations.

As Waples and Do (1994), we favored F curves
(change in inbreeding as a function of time and
demographic parameters) as the primary basis for
assessing the genetic risks of inbreeding associated
with supportive breeding. Translating the dynamics
of F into inbreeding effective population size estim-
ates (NeI) may be convenient to describe the overall
capacity of a population to resist changes in genetic
diversity (Crow and Denniston 1988). However,
supportive breeding systems are by definition in a
transient state and do not have stable but rather fluctu-
ating effective sizes, which have no more descriptive
power than the sequence of F values from which they
are derived. Supplementation over many generations
raises the question of the proportion of breeders used
for supportive breeding that come from the natural
population (W) relative to the captive population (H)
(Utter 1998). In the absence of contribution from the
natural population, it is quite obvious that inbreeding
within such a captive population will rise more rapidly
than if it is “refreshed” through the regular input
of natural breeders. It is therefore important that F
modeling incorporates a refreshment rate parameter.
Conversely, the proportion among all breeders of W
of those born in H at the previous generation and
subsequently contributed to W is also an important
model parameter (e.g. Ryman and Laikre 1991) that
we refer to as the contribution rate. A convenient
way to account for both refreshment and contribu-
tion rates is to view these parameters as migration
rates between the captive and wild populations. In
this way, supportive breeding may be modeled as a
drift-migration process.

Given this conceptual framework, we first
developed a basic model in which we considered
Wright-Fisher ideal random mating conditions for a
monoecious diploid species with discrete generations
(Hartl and Clark 1997). Since supplemented popu-
lations may not be completely isolated from others,
we also defined a metapopulation model in which
gene flow is occurring between the supplemented
populations and a much larger group of unsupple-
mented populations. The dynamics of inbreeding
coefficients were investigated by iterating systems
of recurrence equations by means of the symbolic
calculator Maple�6 (Monagan et al. 2000).

Using these equation systems, we quantified the
dynamics of F under several supportive breeding
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procedures, given specific demographic scenarios. It
is obviously not possible to present a detailed inves-
tigation of all possible combinations of parameter
values in a single study. Consequently, results were
analysed primarily for specific combinations of para-
meter values in terms of the effects of captive popu-
lation census size, refreshment rate, scale of program
parameters, and migration rate on inbreeding coeffi-
cients in wild populations. A detailed investigation of
the effects of sex-ratios and variance in reproductive
success within the captive and wild populations would
justify an elaborate analytical treatment by itself, and
consequently will be treated elsewhere.

Methods

Basic model

We consider a migratory system involving one captive
(H) and one wild (W) population. Reproduction is
monoecious diploid with selfing. Except for exchange
of breeders between H and W, we assume a Wright-
Fisher mating system; that is, reproductive success
among breeders is binomial and generations are
discrete. The contribution parameter C(k) represents
the proportion among all wild breeders in generation
k that were born in H in the previous generation k –
1. The refreshment parameter R(k) is the proportion
among all breeders of population H in generation k
that were born in W in the previous generation k – 1.
Both H And W components reproduce from a mixed
stock of breeders (Figure 1). The census sizes of H
and W are noted NH (k) and NW (k). Note that R and
C respectively correspond to (1 – rc) and (1 – rw),
where rc and rw are the retention parameters recently
defined by Lynch and O’Hely (2001) in their study of
the impact of supportive breeding on genetic fitness of
natural populations.

Recurrence equations
Our purpose is to compute F(k) values. F(k) is defined
as the probability that two alleles randomly chosen
at generation k are identical by descent. The latter
definition allows for consideration of pairs containing
one allele from the wild and one allele from captivity.
Hence, it is a slight generalization of Caballero’s
definition (1994) which only considers gametes which
can unite to form a zygote. Resolving FW(k), the
probability of identity by descent within the wild
population at time k, necessitates the computation

of both FH(k), the probability of identity by descent
within the hatchery population at time k, and FHW(k),
the probability of identity by descent of one allele
from H and one from W at time k. This leads to
the following system of recurrence equations whose
derivation is detailed in the Appendix;

FH (k) = (1 − R)2WF(H) + 2(1 − R) (1)

RFHW(k − 1) + R2WF(W)

FHW (k) = (1 − R)CWF(H) + (1 − R)

(1 − C)FHW(k − 1) +
RCFHW (k − 1) + R(1−C)WF(W)

FW (k) = C2WF(H) + 2C(1 − C)FHW (k−1)

+(1 − C)2WF(W)

where WF(X) = 1/(2NX(k − 1)) + (1−1/(2NX(k−
1)))FX(k − 1) for X = H,W

For the sake of simplicity the parameters C and R are
represented without (k) generation indexes.

The WF symbol represents a function that
produces the expression for the next generation
value of F within an ideal Wright-Fisher population
(Hartl and Clark 1997). This re-coding function was
programmed in the mathematics computer language
Maple�6. The use of symbolic processing may allow
a substantial reduction in writing as well as conceptual
complexity.

Metapopulation model

The above basic model, as in all previous investiga-
tions of supportive breeding (Ryman et al. 1991, 1995;
Waples and Do 1994; Hedrick and Hedgecock 1994;
Hedrick et al. 2000; Wang and Ryman 2001), treated
wild populations as if completely isolated. Clearly,
however, supplemented populations may frequently be
linked to unsupplemented ones by gene flow, which
will affect the dynamics of F resulting from supportive
breeding programs. As a first investigation of the
possible effect of gene flow from other populations,
we consider the simple and idealized case of a wild
population W which is a component of a much larger
metapopulation L. L contributes a proportion m of
migrants among those breeders of W which did not
originate from the captive population H. Hence, at
each generation, the overall proportion of L breeders
within W is (1 – C) M. For simplicity, we assume that
an allele brought from the metapopulation at a given
generation can never be identical by descent to any
allele found in the allelic stock of W in the same or any
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Figure 1. Schematic representation of supplementation at generation k. H(k – 1) is the captive population at generation k – 1. W(k – 1) is the
wild population at generation k – 1. The contribution rate, C(k), represents the proportion among all breeders of W(k) of those born in H(k – 1)
and subsequently contributed to W(k). The refreshment rate, R(k), is the proportion among all breeders of population H(k) of those born in W(k
– 1) and subsequently contributed to H(k). Circles denote gametes taken at random. FH , FW , FHW , refer to captive, wild and captive-wild
probabilities of identity by descent.

previous generations. Save gene flow from metapopu-
lation L, all other conditions pertaining to the basic
model also apply to the metapopulation model.

Recurrence equations
Under the metapopulation model, the probability that
an allele picked at random in W(k) originates from
W(k – 1) is (1 – C) (1 – M). In the basic model this
probability is (1 – C). Substituting (1 – C) (1 – M) for
(1 – C) in the basic recurrence equations system, we
obtain:

FH (k) = (1 − R)2WF(H) + 2(1 − R) (2)

RFHW (k − 1) + R2WF(W)

FHW (k) = (1 − R)CWF(H) + (1 − R)

(1 − C)(1 − M)FHW (k − 1)+
RCFHW(k − 1) + R(1 − C)

(1 − M)WF(W)

FW(k) = C2WF(H) + 2C(1 − C)(1 − M)

FHW (k − 1) + [(1 − C)(1 − M)]2

WF(W)

Again, WF(X) = 1/(2NX(k − 1)) + (1 − 1/

(2NX(k − 1)))FX(k − 1)

for X = H,W

Numerical examples of various demographic
scenarios

In order to illustrate the usefulness of the above equa-
tion systems to depict general trends in the effects
of supporting breeding procedures on F, the demo-
graphic scenarios of supplemented populations were
arranged into three components; pre-supplementation,
supplementation and post-supplementation dynamics,
respectively lasting two, five and three generations.
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Pre-supplementation
We consider declining, constant and growing wild
population census sizes. The declining populations
start at 200 individuals and undergo a decrease of 10
individuals per generation. The constant populations
are composed of 200 individuals in all generations.
The census size of growing populations is 200 at k =
0 and increases by 10 at each generation. Linear time
functions were chosen for declining and growing sizes
mainly for the sake of conceptual simplicity.

Supplementation
We distinguish between successful and unsuccessful
supplementation programs. Although this is certainly
not the only measure of success, we define the latter
as an increase in the census size of the wild popula-
tion (Nw) due to the supplementation program. When
supplementation is successful, Nw grows by S indi-
viduals at each generation; thus, successive sizes are
P + S, P + 2S, P + 3S . . . where S refers to the
scale of the supplementation program parameter and
P is the last census size of the pre-supplementation
period. The successive values of C(k) (contribution
parameter) are: S/(P + S), S/(P + 2S), S/(P + 3S),
. . . When supplementation fails, the population keeps
its pre-supplementation demographic dynamics. In all
scenarios, NH individuals are lost from the natural
population (W) to the captive (H) at the end of
the pre-supplementation period. Hence, the last pre-
supplementation size of W is less than expected, given
its pre-supplementation demography. The census size
of the captive population (NH) is kept constant over all
supplementation generations.

Post-supplementation
Successful supplementation may be followed by a
crash or a sustained increase (e.g. Waples and Do
1994). In the crash scenario, as soon as supple-
mentation is ended, populations take on the size they
would have reached in the absence of supplementa-
tion. If sustained increase is achieved, the size is
kept constant at the level attained at the end of the
supplementation period. Thus, the crash and increase
scenarios mean the same as in Waples and Do (1994).
Unsuccessful supplementation does not modify the
pre-supplementation demography of the population.

Complete scenarios
The impact of supportive breeding on F was explored
within the nine complete demographic scenarios
resulting from the pairing (cartesian product) of the

above components: (declining, constant, growing)
X (crash, increase, unsuccessful) (Figure 2). The
inbreeding dynamics of any given supplementation
program were compared to that of an unsupplemented
population (control) with demography identical to
the pre-supplementation demography of the compared
supplemented populations.

Results

Basic model

Unless otherwise specified, F stands for the inbreeding
coefficient of the wild population (FW ) in the
remaining text and in figures. For simplicity of
presentation, we first analyzed at length the dynamics
of F when successful supplementation is followed
by a sudden return to pre-supplementation levels as
soon as supplementation is halted. Although crash
entails previous supplementation success, we refer
to the latter scenario as the constant/successful/crash
scenario for consistency in scenario nomenclature.
Results for the constant/successful/crash scenario are
shown graphically in the form of FR(k) curves (F as
a function of k with label R), given a specific pair
(NH , S) of parameter values (Figure 3). In turn, we
examined the effects of variable R, S, NH values,
the interactions between S and NH , as well as the
program duration over the dynamics of the inbreeding
coefficient F.

R (refreshment rate)
In all four combinations of parameters (NH , S), the F
curves are largest when R = 0; that is, when captive
individuals are bred entirely from the previous captive
generation. The effect of R on F is decreasing as R
increases. For instance, there is a greater leap in F
values between R = 0 and R = 0.25 than there is
between R = 0.75 and R = 1. Refreshment rate has
a much greater impact over time when captive census
size NH is small. Therefore, maintaining a completely
genetically isolated captive population appears risky
from an inbreeding viewpoint in most situations, and
especially so with lower values of NH . On the other
hand, increasing refreshment rates to very high values
(0.75–1.0) did not always translate into a substan-
tial reduction of F relative to moderate levels (e.g.
0.25–0.50), especially when NH was high.
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Figure 2. Graphical representation of nine categories of demographic scenarios. From left to right: increase, crash, unsuccessful. From top to
bottom: declining, constant, growing. Supplementation periods are bounded by vertical dashed lines. Details are provided in the main text.

S (scale of program)

Given a fixed captive census size NH , S has a
spreading effect over R values; that is, the range of
FR(k) curves increases with S (Figure 3). This means
that maintaining a high refreshment rate is partic-
ularly beneficial when supplementation is intensive.
Also, the spike in F values which takes place on
the first generation of supplementation is larger with
the larger S. In fact, single generation supplementa-
tion with large scales of program show a large spike
in F values immediately followed by a leveling out
which lasts a single generation (not shown). However,
this leveling out effect will not generally compensate
for the large initial inbreeding increase. Hence single
generation supplementation programs are more detri-

mental when the scales of supplementation program
are large, which is entirely consistent with previous
findings of Ryman and Laikre (1991), Waples and Do
(1994), Ryman et al. (1995). The above relationships
were found consistently over all scenarios (data not
shown).

NH (census size of captive population)

Given a fixed scale of supplementation program S, NH

has two main effects over F (Figure 3). First, FR(k)
curves for smaller captive populations are higher for
all R values. For example, when NH = 10 (S =
100), all FR(k) curves stand above the control curve
(no supplementation) whereas they all stand below
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Figure 3. Influence of captive census size NH , scale of program S and refreshment rate R within a constant/successful/crash scenario. Curves
are tagged according to R: a, NH = 10 and S = 100; b, NH = 100 and S = 100; c, NH = 10 and S = 1000; d, NH = 100 and S = 1000.
Supplementation periods are bounded by vertical dashed lines. In each panel, solid dark line is the control (no supplementation).

the control when NH = 100 (S = 100). Second, in
contrast to S, NH has a compressing effect over R,
in that it reduces the distances between FR(k) curves.
Hence refreshment rate values are of a lesser concern
with larger captive populations. These two trends were
observed over all scenarios and all parameter (NH , S)
combinations (data not shown).

S (scale of program) and NH (captive census size)
interactions

Apart from its effects over height of spike and spread
of F curves over R values, S values did not reveal
a regular scaling effect over F. Thus, increasing S
may either decrease or increase F, depending on the
captive population census size NH . For instance, when
NH = 10, raising S from 100 to 1000 results in an
overall increase in F, whereas when NH = 100, it
produces a general decrease of F (Figure 3). More

generally, given a specific supplementation generation
k, with increasing S, F(S) shows either a rapid increase
(NH = 10) or decrease (NH = 100) followed by a much
slower approach towards an R dependent asymptotic
value (Figure 4). Hence, increasing scale values of the
supplementation program will not necessarily bring
any sizeable increase of F, all other parameters being
equal.

Program duration

Although not considered explicitly a parameter in this
study, the number of generations of supplementation
may determine the outcome of F relative to the control
level (no supplementation). For instance, with para-
meter values NH = 100, S = 1000, R = 0, five
generations of supplementation result in a reduction
of F, while a two-generation program would lead to a
net increase (Figure 3d). This indicates that all else
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Figure 4. Comparison of the influence of scale of program S between: a, low (NH = 10) and b, high captive census size (NH = 100). F is
evaluated one generation after the end of the supplementation period. Curves are tagged according to refreshment rate R. Demographic scenario
is constant/successful/crash.

being equal, the effect of program duration over F
should also be taken into account when planning a
supplementation program (see also Waples and Do
1994).

Constant/unsuccessful scenario
Most observations pertaining to the constant/
successful/crash scenario apply as well to the con-
stant/unsuccessful scenario (Figure 5). Basically, F
values are higher than in the constant/successful/crash
scenario. However, these differences are much larger
in the case of the smaller captive size, which again
points to the prevailing effect of this parameter.
Consequently, supplementing from a relatively large
captive population should be considered to reduce
the risks of inbreeding associated with unsuccessful
supplementation.

Declining, constant and growing scenarios
Among the nine demographic scenarios (Figure 2),
only with unsuccessful supplementation did we
find substantial differences among scenarios with
declining, constant and growing pre-supplementation
components (not shown). Therefore, we focus the
subsequent analysis on unsuccessful supplementation
scenarios. With all four combinations of (NH , S) para-
meter values, F curves take on their largest values with

the declining scenario, while the smallest values of F
were obtained with the growing scenario. However,
when F curves are compared to their respective
controls, declining populations are overall closer to the
control situation than are constant or growing popula-
tions. These trends are illustrated in Figure 6 in the
case of NH = 100 and S = 1000. One main obser-
vation from these comparisons is that unsuccessful
supportive breeding programs may most often result
in increased inbreeding of wild populations unless
refreshment rates are maintained high, e.g. above 0.5.

Crash vs increase successful scenarios
The differences between crash and increase post-
supplementation scenarios are readily predictable
from theory (Hartl and Clark 1997). A sudden return
to pre-supplementation demography (crash) produces
rates of increase of F which are identical to those
found in the control F at each post-supplementation
generation save the first one (Figure 3). Thus, under
crash scenarios, the level of F at the end of the
supplementation period appears critical, since it may
determine a durable increase or decrease in F as
compared to no supplementation. In the case of
sustained population increase, rates of increase of F
will be lower than control over subsequent generations
(not shown).
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Figure 5. Influence of captive population census size NH , scale of program S and refreshment rate R within a constant/unsuccessful scenario.
Curves are tagged according to R: a, NH = 10 and S = 100; b, NH = 100 and S = 100; c, NH = 10 and S = 1000; d, NH = 100 and S = 1000.
Supplementation periods are bounded by vertical dashed lines. In each panel, solid dark line is the control (no supplementation).

Metapopulation model

In the metapopulation model, the wild Population
W is considered a subpopulation of a much larger
breeding unit L. We first considered the effect of the
migration parameter M over generations within the
constant/successful/crash scenario, and then examined
its interactions with the refreshment rate R and the size
of captive population NH .

The analyses were restricted to parameter values
NH = 10 and S = 1000 (Figure 7). Higher values of M
are associated with lower F curves for all refreshment
rate values and these differences increase over supple-
mentation generations. In the post-supplementation
period, given a fixed M > 0, all FR(k) curves converge
to the same M-dependent equilibrium value, say fM ,
the larger M values being associated with smaller
values of fM (Hartl and Clark 1997). Moreover,
systems with larger migration rates have higher rates

of convergence. This means that M has a buffering
effect over the rise of inbreeding coefficient due to
supplementation. That is, wild populations connected
to a large metapopulation through substantial gene
flow will tend to recover from the genetic risks of
inbreeding due to supportive breeding program more
quickly than isolated populations.

Discussion

The main objective of this paper was to provide a
conceptual framework and analytical tools to handle
the computation of F in the case of supportive breeding
over any number of generations. To achieve this, we
considered supportive breeding programs as transient
systems of two populations, captive and wild, linked
together by migration. The inbreeding dynamics
within such systems were modeled mathematically
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Figure 6. Influence of pre-supplementation demographies when supplementation is unsuccessful: a, declining; b, constant; c, growing
scenarios. In all three graphs captive census size NH = 10 and scale of program S = 1000. Supplementation periods are bounded by vertical
dashed lines. In each panel, solid dark line is the control (no supplementation).

Figure 7. Influence of the migration rate M over pre-supplementation, supplementation and post-supplementation generations. Values of M
are: a, 0; b, 0.05; c, 0.1; d, 0.2. In all four graphs captive population census size NH = 10 and scale of program S = 1000. Curves are tagged
according to refreshment rate R. Demographic scenario is constant/successful/crash. Supplementation periods are bounded by vertical dashed
lines. In each panel, solid dark line is the control (no supplementation).
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as recurrence equation systems. These were used to
compare the dynamics of F under various supportive
breeding procedures, given specific demographic
scenarios that comprised pre-supplementation, supple-
mentation proper and post-supplementation compo-
nents. In the following discussion we assume that both
captive and wild populations satisfy the Wright-Fisher
model and as a consequence have equal effective
and census sizes. While the main qualitative conclu-
sions can be generalized to populations with effective
sizes different from census sizes, Ne/N ratio would of
course have to be considered for designing supportive
breeding programs of “real” populations departing
from the Wright-Fisher model (see below).

In principle, the complex dynamics of F within
multi-generation supportive breeding programs may
be tackled either through simulations (e.g. Waples
and Do 1994) or recurrence equations systems as
used here. Since it produces near exact solutions
in virtually no time, the latter technique allows
for fast and extensive exploration of mathematical
relationships, compared to simulations. Conversely,
recurrence equations systems may potentially be of
such complexity as to make them extremely diffi-
cult to develop. However, this need not be the case
since symbolic complexity can be handled by using
symbolic calculators.

Globally, our findings were in agreement with
Waples’ (1999) contention that there is no valid
general statement as to the consequences on genetic
diversity of supportive breeding procedures over
multiple generations. The dynamics of F within the
context of supplementation is a complex function of
several potentially manageable parameters such as the
census size of captive populations, refreshment rates,
the scale of supplementation program and its dura-
tion. F is also subjected to largely uncontrollable
conditions, such as gene flow from other wild popu-
lations, as well as variable demographic conditions
during the period of supplementation and afterwards.
As previously reported by Waples and Do (1994) (see
also Cuenco 1994), and more recently by Wang and
Ryman (2001), we found that under many condi-
tions, supplementation did not result in substantial
inbreeding increment relative to control situations. In
fact, several conditions lowered overall inbreeding
relative to control situations without supplementa-
tion. For instance, given a constant/successful/crash
scenario with NH = 100, S = 1000, all refreshment
values produced F values below control at the end
of the five generation supplementation program. Even

with unsuccessful supplementation that does not result
in any increase of census size, an inbreeding reduction
was observed under some parameter combinations.
For instance, given a constant/unsuccessful scenario
with NH = 100, S = 100, all refreshment rates equal
to or over 0.25 produced F values below control for
the entire supplementation period. This phenomenon
may potentially be attributed to a transitory popula-
tion subdivision effect. Wang and Caballero (1999)
have shown that under some, but not all, migra-
tion regimes, metapopulations with constant overall
census size have higher effective sizes than a single
population of the same census size.

The census size of the captive population was
found to be the single most important control-
lable parameter determining the effect of supportive
breeding on genetic risks of inbreeding. This was
revealed by the simulation study of Waples and Do
(1994) within the specific context of captive brood-
stock programs of Pacific salmonids. Although our
objective was not to investigate in details the relation-
ship between inbreeding dynamics and captive census
size, we generally observed that increasing NH was
always beneficial in terms of inbreeding reduction, and
especially so with small captive population size. The
influence of the scale of supplementation program S
was also highly dependent upon census size of the
captive population. Given low values of the latter,
increasing the scale was detrimental as it quickly
raised F levels. Given higher values of NH , however,
increasing the scale resulted in a fast reduction of F. In
both cases F(S) curves quickly converged to an asymp-
totic value. This suggests that given a sufficiently
large captive census size relative to census size of
wild populations, intensive supplementation programs
may theoretically be run without too much concern
over inbreeding increment under some circumstances.
The practical problem is of course to determine such
a critical census size for the captive population. A
possible practical solution could be to bring into
captivity as many breeders as possible. This, however,
may be associated with important drawbacks, such as
increased risks of directional genetic changes, risks
to the remaining natural population through mining
wild broodstock, and risks of catastrophic failure
of captive populations (discussed in Waples and Do
1994). Consequently, future efforts should be devoted
to find practical means of assessing critical captive
census sizes in the form of approximation formulae.
Monitoring changes in genetic diversity in the wild
population as well as differential mortality rate and
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reproductive success of individuals of captive and wild
origin would also be most useful in that perspective.

The proportions of captive breeders brought into
captivity from the wild (refreshment rate R) also
bore a complex relationship to inbreeding coefficient
dynamics. However, under all conditions considered,
F was more responsive to R with smaller captive popu-
lation census sizes and larger scales of supportive
breeding. In addition, curves representing no refresh-
ment (totally genetically isolated captive population)
always had higher values, most often standing far apart
from other F curves. Clearly, one should generally aim
at high refreshment rates in supportive breeding, espe-
cially so when a small captive population is expected
to contribute large numbers of breeders to the supple-
mented population.

The supplemented population may be part of a
large metapopulation that provides it with a proportion
of migrants at every generation. During the supple-
mentation period, such systems always had lower
inbreeding coefficients than did ones without migra-
tion. Furthermore, this differential effect increased
with each additional supplementation generation.
As expected, inbreeding coefficients were found to
decrease with increasing migration rate. In the post-
supplementation generations, rises in F due to supple-
mentation eventually vanished in populations that
were part of a metapopulation, and the pace of this
cleansing effect was faster with higher values of M.
These observations indicate that supplementation risk
assessment should take into account the level of gene
flow between supplemented and neighboring popu-
lations. They also suggest that assuming complete
genetic isolation of supplemented populations may in
some circumstances potentially lead to overly conser-
vative predictions regarding rates of inbreeding.

We also found that failure of supportive breeding
to increase census size was less detrimental (relative
to respective unsupplemented control situations) to
declining populations than to either constant or
growing populations. This trend was also most
noticeable when refreshment rates were low. In the
case of successful programs, the increase versus
crash scenarios showed dramatic and readily predict-
able post-supplementation differences. As increase
scenarios may generally be too optimistic (Waples and
Do 1994), crash scenarios following supplementation
should be considered as a more conservative outcome
since a rise in inbreeding at the end of supplementa-
tion (relative to unsupplemented demographies) could
cause long term genetic risks of inbreeding.

Limitations of this study

This study dealt primarily with reproduction processes
satisfying most of the Wright-Fisher model assump-
tions. Real reproductive systems involve many devi-
ations from this simplifying model, such as biased sex
ratios, non-random variance in family size and over-
lapping breeding generations. In order to solve these
complex systems, we plan to make extensive use of
symbolic processing. The effects over F of several
additional parameters will have to be explored and
analyzed systematically, which was beyond the scope
of the present study.

This study provided insights into the mathematical
nature of the general relationships between inbreeding
coefficient and several demographic parameters. In a
next step, the effect of these parameters on F could be
modeled more accurately, at least under some standard
reference conditions. As previously presented by
Ryman and Laikre (1991) for a single supplementation
event, a systematic investigation of captive population
census size as a parameter controlling the impact of
scale of program over inbreeding dynamics will be
of particular interest. Also, demographic declines and
expansions were all assumed to be linear, whereas
real demographic dynamics may generally involve
more complex, density-dependent recruitment func-
tions, and have consequences on temporal changes
in inbreeding (Waples and Do 1994). The impact
of demography should therefore be further assessed
by running extensive computations under different
demographic models.

The metapopulation model indicated that the
occurrence of gene flow between supplemented
and non-supplemented populations may have major
impacts on the dynamics of inbreeding in supportive
breeding. Strictly speaking, however, this model is
only valid for situations where supplemented popula-
tions are embedded in a much larger metapopulation.
Therefore, conclusions pertaining to the metapopula-
tion model should not readily be extended a priori to
more complex systems, for instance where the supple-
mented population is linked by gene flow to one or
few populations of variable and roughly similar finite
sizes. It therefore remains to investigate the inbreeding
effect of supplementation in the context of collec-
tions of sub-populations under a variety of migration
models.

To conclude, the results of this study join those
of an increasing number of investigations showing
that supportive breeding may, in some circumstances,
reduce inbreeding rates relative to unsupplemented
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populations (Cuenco 1994; Waples and Do 1994;
Ryman et al. 1995; Wang and Ryman 2001). As
pointed out by Waples and Do (1994), however,
captive broodstock programs have a very complex
nature, and results such as those we presented here
should not be used in isolation, but in consideration
of all other possible consequences of such programs
(e.g. Utter 1998; Waples 1999). For instance, Lynch
and O’Hely (2001) theoretically showed that maxi-
mizing effective population size (either inbreeding or
variance) may not necessarily minimize the genetic
supplementation load in all circumstances.
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Appendix: Derivation of recurrence equations for
basic model

We consider a migratory system involving one captive (H) and
one wild (W) population. Reproduction is monoecious diploid with
selfing. Except for exchange of breeders between H and W, we
assume a Wright-Fisher mating system; reproductive success among
breeders is binomial and generations are discrete. The proportion of
breeders contributed by H to W at generation k is C(k) and that of
breeders contributed by W to H is R(k). Hence each of H and W
reproduce out of a mixed stock of breeders (Figure 1). The sizes
of H and W at generation k are noted NH (k) and NW (k). Our
purpose is to compute F values, i.e. probabilities that two alleles,
say A1 and A2, picked at random at generation k, are identical by
descent. Let FW , FH , and FHW denote F values when A1 and A2
are randomly chosen in W, H, and in both H and W, one in H and
the other in W, respectively. Although we are mainly concerned
with FW (k), we have to simultaneously compute FH (k) and
FHW (k).

Basic events and associated F values

When, at generation k, one picks alleles A1 and A2 at random, four
events may take place:

hh: A1 came from H(k – 1), A2 came from H(k – 1)
hw: A1 came from H(k – 1), A2 came from W(k – 1)
wh: A1 came from W(k – 1), A2 came from H(k – 1)
ww: A1 came from W(k – 1), A2 came from W(k – 1)
To each of these events there corresponds a specific F value:

F

Hh 1/(2 NH (k – 1)) + (1 – 1/(2 NH (k – 1))) FH (k – 1)

Hw FHW (k – 1)

Wh FHW (k – 1)

Ww 1/(2 NW (k – 1)) + (1 – 1/(2 NW (k – 1))) FW (k – 1)
Note that events hh and ww are products of Wright-Fisher mating
processes taking place at generation k – 1, hence their associated F
value at generation k (Hartl and Clark 1997).

Recurrence equations as weighted sums

To compute FH (k), we need to weigh the above F values against
the probabilities of occurrence of the four events (hh, hw, wh, ww),
given that A1 and A2 are both picked in H(k). Writing R instead of
R(k), these probabilities are respectively: (1 – R)2, (1 – R) R, R (1
– R), R2.

Then FH (k) is equal to the weighted sum of all four possible
events:

FH (k) = (1 − R)2WF(H) + 2(1 − R)RFHW (k − 1) + R2WF(W)

where for any Wright-Fisher population X:

WF(X) = 1/(2NX(k − 1)) + (1 − 1/(2NX(k − 1)))FX(k − 1)

Reasoning along the same lines, we obtain recurrence equations for
FW (k) and FHW (k). Together the equations for FH (k), FW (k) and
FHW (k) make up the system of recurrence equations shown in the
Basic model section. This system was cast into matrix form to iterate
and produce sequences of numerical probability by descent vectors
F(k) = (FH (k), FHW (k), FW (k)).
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