Individual-based genotype analysis in studies of
parentage and population assignment: how many
loci, how many alleles??

Louis Bernatchez and Pierre Duchesne

Abstract: We developed multivatiate analytical models to predict the probability of assigning offspring to parental cou-
ples as a function of population size, number of loci, and allelic diversity and the relationships between the probability
of allocating individuals to their population of origin as a function of number of loci and allelic diversity. The parent-
age model predicts that the number of loci and number of alleles contribute interactively to increase assignment suc-
cess. Given sufficient allelic diversity, a relatively low number of loci is required to achieve high allocation success
even for relatively large numbers of possible parents. In contrast, the population model predicts an additive contribution
of the number of loci and alleles. There appears to be no significant gain in increasing allelic diversity beyond approxi-
mately 6-10 alleles per locus in population assignment studies. Such predictive models should contribute to maximiz-
ing the returns of population and parentage assignment studies by increasing our understanding of interactions among
the various variables affecting allocation success and by allowing the adjustment a priori of the required level of reso-
Iution and, consequently, optimizing the costs—benefits ratio in the use of molecular markers.

Résumé : Nous présentons ici deux modeles analytiques multivariés prédisant la probabilité d’assigner des rejetons aux
couples parentaux en fonction du nombre de parents potentiels, du nombre de locus, de la diversité allélique et la rela-
tion entre la probabilité d’assigner des individus a leur population d’origine en fonction du nombre de locus et de la
diversité allélique. Le modele parental prédit une contribution interactive entre le nombre de locus et d’alleles sur
I’accroissement du succes d’assignation. Etant donnée une diversité allélique suffisante, un nombre relativement faible
de locus est requis pour atteindre un succes d’assignation élevé, méme quand le nombre de parents possibles est grand.
Inversement, le modele populationnel prédit une contribution additive du nombre de locus et d’alleles. Peu de gain si-
gnificatif est obtenu en augmentant la diversité allélique au-dela d’environ six a 10 alleles par locus dans les études
d’assignation populationnelle. De tels modeles prédictifs devraient contribuer a maximiser le rendement d’études
d’assignation parentale et populationnelle en améliorant notre compréhension des interactions entre les différentes varia-
bles pouvant influencer le succés d’allocation et en permettant d’ajuster a priori le niveau requis de résolution et donc,

d’optimiser le rapport colit-bénéfice de I’utilisation des marqueurs moléculaires.

Introduction

The use of molecular genetics is increasingly contributing
to our knowledge of fundamental issues in evolutionary biol-
ogy of aquatic organisms. For instance, phylogeographic
studies have been instrumental in elucidating patterns and
processes of postglacial recolonization and highlighting the
importance of historical events in shaping the genetic diver-
sity of contemporary populations (Bowen and Avise 1995;
Stanley et al. 1996; Colbourne et Hebert 1996; Bernatchez
and Wilson 1998; Taylor and McPhail 1999). When used in
combination with ecological approaches, the use of molecu-
lar genetics also contributed to our understanding of the role
of evolutionary forces involved in population divergence
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and, ultimately, speciation events (e.g., Taylor and Bentzen
1993; Bernatchez et al. 1999; Lu and Bernatchez 1999;
Turgeon et al. 1999). Such information, in turn, has been of
paramount relevance for applied purposes, such as in defin-
ing evolutionary significant units for conservation (Dizon et
al. 1992; Bernatchez 1995; Mayden 1995) and optimizing
fisheries management (Utter and Ryman 1993; Carvalho and
Hauser 1994; Ward and Grewe 1994).

Typically, most applications of molecular genetics rely on
estimation of demographic parameters of diversity and dif-
ferentiation that are derived from averaging the genetic com-
position over populations. It has been recognized for nearly
20 years, however, that further knowledge of relevance to
both evolutionary biology and management may be obtained
from the analysis of individual-based genotypic information
(Foltz and Hoogland 1981; Hanken and Sherman 1981;
Smouse et al. 1982). Yet, the potential of such applications
remained relatively unexplored outside the studies of human
and plant populations until recently (but see Jordan and
Youngson 1992, and references therein). The most likely ex-
planation for this is that the levels of accuracy and precision
required in such studies were beyond the reach of available
genetic markers (Smouse and Chevillon 1998). The bloom-
ing development of new genetic markers over the last de-
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cade, namely variable number of tandem repeat loci
(VNTRs; microsatellites and minisatellites), has, however,
revived a major interest in studies based on the definition of
individual multilocus genotypes and opened exciting ave-
nues of research and applications (reviewed in Estoup and
Angers 1998; Davies et al. 1999).

Besides genetic mapping, studies based on the analysis of
individual multilocus genotypes can be grouped into two
broad categories of applications: parentage and population
assignments. The former includes studies necessitating the
assessment of precise parental relationships within popula-
tions, which may be achieved in various ways, including the
use of exclusion probability, likelihood methods, and cate-
gorical and fractional parental assignment (reviewed in Mar-
shall et al. 1998; see also Meagher and Thompson 1986).
This may allow the defining of social structure (Amos et al.
1993), mating patterns (Clapham and Palsbgll 1997; Jones
and Avise 1997), kinship (Fontaine and Dodson 1999), and
quantification of reproductive success (Rico et al. 1992;
Jones et al. 1998). Such analyses may also contribute im-
provement of the efficiency of selective breeding programs
in domesticated populations (Herbinger et al. 1997; Estoup
et al. 1998; Ferguson and Danzmann 1998). Studies of popu-
lation assignments necessitate the determination of popula-
tion membership of single individuals. This consists in
assigning an individual to the population in which its multil-
ocus genotype has the highest probability of occurring, as-
suming reliable allelic representation, Hardy—Weinberg
equilibrium, and locus independence. Such estimation may
be relevant to more precisely quantify gene flow and follow
movements of individuals (Waser and Strobeck 1998;
Palsbgll et al. 1997), determine the degree of differentiation
among populations (Paetkau et al. 1995), and establish rela-
tionships among individuals within and among populations
or higher taxonomic groupings (Nielsen et al. 1997; Roques
et al. 1999). An extension of these aproaches is to detect the
contribution of stocked fish in natural populations or to de-
tect an admixture of populations in a sample of individuals
of unknown origin (Banks et al. 1996; Nielsen et al. 1997,
Tessier and Bernatchez 1998; Roques et al. 1999).

In contrast with the efforts made to find and develop
markers suitable for individual-based multilocus genotype
analyses, relatively little attention has been paid to deter-
mine how the characteristics of genetic markers may affect
their usefulness for such purposes. Namely, it would be of
particular interest to know a priori what combinations of
numbers and types (especially in terms of allelic diversity)
of loci should be used in order to reach a required level of
resolution and optimize the use of such applications. The
few studies that undertook such evaluation were based
mainly on specific empirical observations or simulation
studies derived from a finite set of loci with particular allelic
distributions (e.g., Shriver et al. 1997; Estoup et al. 1998;
Marshall et al. 1998). Such studies are certainly instructive;
however, it remains unclear how much they can be general-
ized and used to make predictions in other contexts. This
may be better achieved by a simulation exploration that al-
lows a broader coverage of the vast spectrum of possible
combinations of factors.

In this study, we used such an approach with the main ob-
jective of proposing multivariate analytical functions that
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could predict population and parentage assignment success
as a function of number and properties of loci. For parentage
analysis, we were interested in assessing the relationships
between the probability of assigning offspring—parental cou-
ples in a close population as a function of population size,
number of loci, and number and distribution of alleles per
locus. We decided to focus on this particular issue for three
reasons. First, this represents the most general situation of
parentage analysis from which more specific cases can be
derived. Second, exploration of parentage analyses at the
population level and involving the identification of off-
spring—parental couples are scarce compared with the bulk
of studies concerned with paternity analyses in which the
mother—offspring is generally known (reviewed in Marshall
et al. 1998). Such situations, however, apply only to those
species providing parental care. In contrast, situations where
both maternal and paternal parents, as well as their mating
patterns, are unknown likely apply to a wider range of
aquatic species, particularly in fishes. For population assign-
ment, we were particularly interested in assessing the gen-
eral relationships between the probability of allocating
individuals to populations of origin, as well as its variance,
as a function of number of locus and allelic diversity. We
decided not to extend this investigation to the exploration of
the effect of number of populations and their extent of diver-
gence, which would justify a detailed analysis by itself.
However, this has been partly investigated previously using
a different procedure (Smouse et al. 1982). Although this
paper focuses mainly on aquatic organisms, the models that
we propose have general applicabilities and may be used for
any sexually reproducing organisms.

Parentage assignment

We want to determine the probability Ps of successfully
allocating an individual offspring to its parents based on its
multilocus genotype. This is accomplished by the maximum
likelihood method detailed in Sancristobal and Chevalet
(1997). Briefly, this consists in computing the probability of
occurrence of a given offspring genotype among the poten-
tial offsprings of each possible parental pair in a population.
Once the probability of occurrence of the multilocus geno-
type of a given offspring is obtained, it is allocated to the pa-
rental couple showing the highest probability of producing
it. We assume a Wright-Fisher type of reproduction and no
prior knowledge on the sex of parents. The number of loci is
N, the average number of alleles per locus is n, and the true
parental pair belongs to a set of Ng potential parents. The Ps
may be viewed as a random variable for a given combination
of (n, N, Ng). Given this, we seek to obtain an analytical ex-
pression P(N, n, Ng) that will reflect the mathematical struc-
ture of relationships between Ps and these three variables.
Next, we want to determine analytically, based on P, mini-
mal conditions on the values of (N, n, Ng) so that Ps can be
trusted to be at least 90% most of the time. Given any triplet
(N, n, Ng), one would then be able to predict with confi-
dence whether or not the 90% success rate threshold will be
reached. The search for such minimal conditions led us to
build P as a near lower bound for the distribution of Ps(n, N,
Ng), thus representing a conservative modelling. We also
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Fig. 1. Box plots representing empirical distributions of the differ-
ences in probability of exclusion P, between random allelic distri-
butions and the normal allelic distribution associated with n = 5,
10, 15, and 20 alleles. For each number of alleles, 1000 random
distributions were obtained by Monte-Carlo simulations using

U(0, 1). Almost all random distributions showed larger values of
P, than the normal distribution for the same number of alleles. To
obtain a normal allelic distribution for n (odd) alleles, we build
the following list: {1/(n — 1), 2/(n — 2),..., n/(n — 1)}. Each num-
ber is then evaluated by the normal density function N(1/2, 0.15).
Finally, each member of this new list is divided by the sum of the
list to get £ = 1.
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aimed at maintaining a small discrepancy (=0.05) between
P(n, N, Ng) and the smallest Ps values.

Methodological outlines

We first modellized the expectancy of Ps for allelic distri-
butions with poor information content. To this end, a normal
allelic distribution (detailed in the caption to Fig. 1) was
constructed for any number of alleles per locus. The distri-
bution of differences between the probability of exclusion
P., (Smouse and Chakraborty 1986) obtained from random
and normal allelic distributions of a same number of alleles
illustrates the generally poor content of information of a nor-
mal allelic distribution for parentage analysis (Fig. 1). Thus,
we expected that conservative modelling of the means of Ps
for a normal distribution would lead to a reliable lower
bound P for random allelic distributions.

To obtain an analytical expression P(n, N, Ng) to be used
as a conservative lower bound for the distribution of Ps(n, N,
Ng), we performed the following steps. First, simulations
were done to collect estimates of the expectancy of Ps,
E(Ps), for each of a series of specific (N, n, Ng) combina-
tions. We then proceeded to a conservative modelling of
these estimates as an analytical expression, P(N, n, Ng).
Finally, the predictive potential of P as well as its structural
similarity to Ps for random allelic distributions was tested by
comparing the fit between independent data obtained by
simulations and values predicted by the model.

Precisely, individual Ps values were computed with the
following procedure: (1) construction of the normal allelic
distribution for n alleles, (2) random generation of Ng paren-
tal genotypes for N loci with the allelic distributions ob-

Fig. 2. Observed relationship between estimates of the expec-
tancy of allocation success Ps and number of alleles n together
with the corresponding analytical curve in the case of five loci
and 20 parents.
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tained from step 1, (3) random generation of 100 offsprings
from step 2, (4) parentage assignment of offsprings among
all possible parent pairs using the maximum likelihood
method, and (5) estimation of the proportion of correct allo-
cations. The E(Ps) values were estimated from the average
of Ps values based on 20 such realizations for all combina-
tions of the following parameter values: Ng = 10, 20, 30, 40,
50,and 70, N=1,2,3,4,5,6,and 7, and n =3, 5,9, 17, 21,
and 31. All procedures were performed using programs writ-
ten with the algebric computer system Maple V, version 5.
A detailed description of the procedure used for estimating par-
entage assignment of offsprings is provided in Appendix 2.

Stepwise modelling of E(Ps) for normal allelic
distributions

The modelling of E(Ps) as a function of n, N, and Ng was
done in four steps. We first established the relationship be-
tween the number of alleles n and E(Ps). The empirical data
show that E(Ps) is an increasing function of n that converges
to unity (Fig. 2). The rate of increase of E(Ps) is regularly
diminishing with n. A simple, straightforward way of model-
ling such behaviour is

M pm)=1-01/s)".

Because we were mainly interested in high values of
E(Ps), we choose s so that p(ny) = 0.8 = Ps(ny). In other
words, the desired s makes the empirical and analytical
curves cross precisely when they reach 0.8 (Fig. 2). Using
this procedure, we computed s for each number of loci (N =
1-7). As exemplified in Fig. 2 for N = 5, p(n) remained un-
der the empirical data for all values over 0.8, in agreement
with our search for a lower bound for Ps. The same pattern
was observed for other numbers of loci.

The speed parameter s is dependent on N and conse-
quently may be viewed as a function of the number of loci.
The second step was thus to modellize the functional rela-
tionships between the number of loci and s. The empirical
relationship between s and N (varying from 1 to 7) has an
obvious linear component (Fig. 3). The number of parents
Ng clearly influences s(N) (Fig. 3). For each of Ng = 10, 20,
30, 40, 50, and 70, we fitted the parameters m and b to their
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Fig. 3. Empirical relationships between the number of loci N and
the speed parameter s as defined in eq. 1 for various numbers of
parents (10, 20, 30, 40, 50, and 70).
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Fig. 4. Empirical relationship between the number of parents Ng
and the slope parameter m as defined in eq. 2 along with the fit-
ted analytical curve.
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respective empirical s(N) curves. In all cases, b was esti-
mated at = 0.915 such that

(2) s(N) =mN +0.915.

The third step was thus to modellize the functional relation-
ships between the number of parents Ng and m. The empiri-
cal relationships between m and Ng (varying from 10 to 70)
show a decreasing trend in the form 1/x. A satisfactory fit-
ting between empirical data and the model (Fig. 4) was
reached with the following equation:

1

No)=_ -~
(3)  m(Ng) Ng+13)

+0.032.

Equating eqs. 1, 2, and 3, we now define P(n, N, Ng), the
relationships between parentage assignment success as a
function of population size (Ng), number of loci (N), and
number of alleles per locus (n), as follows:
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Fig. 5. According to the analytical model P, the surface repre-
senting the functional relationship between allocation success P,
number of loci N, and average number of alleles n per locus in
the case of 20 parents.
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Figure 5 illustrates the relationships between the predicted
parentage assignment success P, n, and N for Ng = 20. The
graph illustrates that for any given number of loci, it is al-
ways possible to tend towards P = 1 by increasing the num-
ber of alleles per locus. Clearly, this indicates that increasing
the number of alleles is highly advantageous in parentage as-
signment. Also, the rate at which P approaches unity de-
pends strongly on the number of loci. Equation 4 also
predicts that parentage assignment success will decrease
with an increasing number of parents, but not linearly (see
below).

Modelling E(Ps) for uniform allelic distributions

In order to explore the generality of predicting parentage
assignment from a simple analytical function, we use the
stepwise procedures described above to model E(Ps) as a
function of n, N, and Ng for uniform allelic distributions
(identical frequencies of 1/n for all alleles). A modelling
procedure identical to the one applied for a normal allelic
distribution led to the following analogous expression:

1

L 40057 [V +088
Ng+6

which reflects a mathematical structure identical to that ob-
tained for a normal allelic distribution. Given that P, values

J1

P,i(n,N,Ng) =1—
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Fig. 6. Empirical points and analytical curves representing mini-
mal number of loci N to reach allocation success Ps = 0.90 as a
function of number of parents Ng for 7, 11, and 13 alleles.
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obtained for most randomly generated allelic distributions
stand between P, ., and P, their structural similarity may
indicate the generality of the relationships between parent-
age assignment success (Ps) as a function of (N, n, Ng).

Predictive potential

As stated above, our goal was to identify (N, n, Ng) trip-
lets for which Ps will be at least 0.90. Thus, we empirically
searched for the minimal N values that, given a normal
allelic distribution and specific values of n and Ng, were
large enough to ensure that Ps = 0.90. This quantity was de-
noted N90. Simulations were done to estimate N90 in all
combinations of the following number of alleles (n = 7, 9,
11, and 13) and number of parents (Ng = 50, 100, 150, 250,
and 300). Each estimate of N90 resulted from the random
generation of parents and 100 offspring as described above.
Then, we compared these empirical N90 values with analyti-
cal N derived from P(N, n, Ng). Analytical N was evaluated
as an explicit function of (n, Ng, P) derived from eq. 4:

(5) Npom (n,Ng, P) =

1 1
1 1
0.125| 1000] —— [ Ng — 915Ng + 13000] —— [ — 11895
1-P 1-P

(177 + 4Ng)

We found that N evaluated at P = 0.9 generally exceeded
N9O for any combination of n and Ng. We reasoned that if
the conservative nature of eq. 4 was the main source of dis-
crepancy, then we should be able to find a smaller value for
P such that N90 and N would agree most of the time. In fact,
we found that P = 0.83 produced a very close approximation
to empirical N90 (Fig. 6). In other words, given specific
numbers of alleles and number of parents, if one sets N =
N,orm(n, Ng, 0.83), then the triplet (N, n, Ng) will be mini-
mal in the sense that an increase in either N or n or a de-
crease in Ng will only raise its allocation power and
consequently the confidence that Ps > 90%.

In order to further investigate the generality of the above
equation to assess P as a lower bound for individual realisa-

Fig. 7. Three-dimensional representation of 1200 triplets (N, n,
Ps), each composed of a number of loci N chosen at random
from 2 to 7, a number of alleles n chosen at random from 2 to
31, and of the allocation success Ps resulting from a Monte-
Carlo simulation in the case of 70 parents.

Allocation success (Ps)

tions of Ps, we performed simulations with random allelic
distributions involving random sets of 20, 70, and 100 par-
ents. For each N loci varying from 2 to 7 (from 2 to 8 in the
case of Ng = 100), 200 n values (restricted between 2 and
31) were randomly generated. One hundred offspring were
also randomly generated for each combination of (N, n, Ng),
from which the proportion of correct allocations (Ps) was
computed. It can be seen from Fig. 7 that P and the random
realizations of Ps have very similar structures. We then di-
vided the empirical triplets (N, n, Ng) into two categories:
those with equal or greater power than minimal triplets and
those with lesser power than minimal triplets. For both cate-
gories and each number of loci, we computed the proportion
of realizations having Ps =0.90. In the high-power category,
we found very high proportions of Ps > 0.9 for all numbers
of loci except N = 2 and N = 3. The overall percentage of
high values was 84% for Ng = 20, 98% for Ng = 70, and
100% for Ng = 100. Excluding triplets with N = 2 or 3, we
obtained 95% for Ng = 20, 100% for Ng = 70, and 100% for
Ng = 100. Conversely, the low-power category yielded low
percentages of high values (Ps = 0.90) for Ng = 20 (7%),
Ng =70 (10%), and Ng = 100 (12%). Because the procedure
to determine analytical minimal triplets was based on data
with Ng as high as 300, we believe that similar results
would be obtained for higher numbers of parents as well.

Practical use of minimal triplets (N, n, Ng)

Minimal triplets may be used to determine the minimal
number of loci to reach a parental assignment success P >
0.90. For instance, if the number of parents is 200 and the
average number of alleles per locus is 7, then a minimal N
would be N, (7, 200, 0.83) = 10. Conversely, one may seek
a minimal number of alleles per locus, given an upper limit
on the number of loci. Take the case of N = 6 and Ng = 250.
Using eq. 5, one finds four minimal triplets satisfying these
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initial conditions: (6, 13, 250), (6, 14, 250), (6, 15, 250), and
(6, 16, 250). Similarly, it can be verified that given 9 loci and
8 alleles per locus, any triplet with a number of parents in the
range of 150-300 parents will be minimal. Because such cal-
culations may be tedious, we programmed an electronic spread-
sheet to compute minimal triplets over a user-defined array of
numbers of parents. Appendix 1 provides a table of selected
output values. This spreadsheet is available at the following
internet address: http://www.bio.ulaval.ca/LBernatchez.html.
Note that P should be viewed as a preanalysis predictor. A
more accurate after-analysis estimate of Ps should be sought
by running simulations with the established genetic data.

Population allocation

We want to determine the probability Ps of successfully
allocating an individual to its population of origin based on
its multilocus genotype, and population-specific allelic dis-
tribution, which is accomplished by a maximum likelihood
algorithm (Shriver et al. 1997). This consists in assigning an
individual to the population in which its multilocus genotype
has the highest probability of occurring, assuming reliable
allelic representation, Hardy—Weinberg equilibrium, and lo-
cus independence. Once the probability of occurrence of the
multilocus genotype of a given offspring is obtained, it is al-
located to the population showing the highest probability of
producing it. The Ps will depend on the number of loci N
and the average number of alleles per locus n. Given N and
n, and considering the distribution of Ps over all possible
pairs of allelic distributions between two populations, Ps
may be viewed as a random variable. Given this, we first
want to explore the relationships of the distribution of Ps as
a function of number of loci and average number of alleles
per locus with a random allelic distribution. We then seek a
bivariate analytical expression P(N, n) that will predict the
behaviour of the expectancy of Ps as a function of number of
loci and alleles, given all possible allelic distributions.

Methodological outlines

We first estimate the means of Ps for a number of pairs
(N, n), which serve as a basis for modelling P(N, n). Then, P
is validated through Monte-Carlo simulations with values of
(N, n) lying outside the initial modelling domain. Finally, we
investigate the precision of P(N, n) as a predictor of individ-
ual realisations of Ps for given values of N and n. Precisely,
individual Ps values were computed for a given combination
of (N, n) using the following procedure: (1) generation of
two random allelic distributions, (2) construction of all pos-
sible genotypes for each allelic distribution obtained in step
1, and (3) computation of the proportion of successful allo-
cations from step 2. Note that given a specific pair of allelic
distributions, the value of Ps obtained is exact and does not
depend on a random production of genotypes (Roques et al.
1999). Thus, the probability of correct allocation for any
given multilocus genotype g can be exactly computed ac-
cording to the formula

p(g) = Max (p(8), P»(8))
Pi(8) + pa(8)

where p,(g) is the probability of genotype g in population 1
and p,(g) is the probability of genotype g in population 2.
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The expected probability of allocation success over all geno-
types is exactly equal to the weighted sum of probabilities:

P = Zp(g)[im(g) +;P2(8)}

geG

To exhaustively run through all possible multilocus geno-
types, we first generated this set symbolically. The p;(g) and
po(g) values were then computed by substitution of allelic
frequencies for the allele symbols. Besides providing preci-
sion, this approach proved to be fast enough to generate a
large number of pairs of allelic distributions for each combi-
nation (N, n). Thus, the expectancy of Ps, E(Ps), was esti-
mated from the average of 1500 pairs of allelic distributions
for each of the following combinations: 1 locus, 2-28 al-
leles; 2 loci, 2—-10 alleles; 3 loci, 2—6 alleles; 4 loci, 2—4 al-
leles; 5 loci, 2 and 3 alleles; 6 loci, 2 alleles; 7 loci,
2 alleles. Increasing the number of combinations was limited
by the explosive increment in number of possible multilocus
genotypes with increasing number of loci and alleles. All of
these procedures were performed using programs written
with the algebric computer system Maple V, version 5.

Stepwise modelling of E(Ps)

The modelling of E(Ps) as a function of n and N was done
in three steps. We first established the relationships between
the number of alleles n and E(Ps). For each number of loci
N, E(Ps) is an increasing function p(n) of the number of al-
leles, which is bounded by an asymptotic value oy, smaller
than 1 (Fig. 8, top panel), that is dependent on the number of
loci. These properties, combined with data compatibility, led
to the following analytical expression:

1 n+2
6)  py(m)=oy -~
2
Second, we modellized the relationship between the num-
ber of loci and E(Ps) for n = 2. The empirical data indicate
that the function p,(/N) has an asymptotic value of 1 (Fig. 8,
bottom panel). Moreover, since it is increasing mono-

+
tonically, a suitable analytical model is 1 —(ljv ,a>1. A
a

satisfactory fitting for N ranging from 1 to 8 (Fig. 8, bottom
panel) was reached for a = 1.25 and b = 4 such that

- 4N+4
N BN =1- N

Third, we established the relationships between E(Ps) and
pairs of (N, n). If ay is quantified, then eq. 6 can provide an
explicit bivariate function P(N, n). This can be solved by
equating eqgs. 6 and 7, which have to be equal at n = 2:

o 17 (4 N+4
16 s '
which is then substituted into eq. 6 to define P(N, n), the

population assignment success as a function of number of
loci and number of alleles per locus, as follows:

+4 n+2
17 (4 1
Ny =—t-[2] —[2] .
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Fig. 8. Top panel: empirical data and analytical curve describing
the relationship between the expectancy of allocation success Ps
and the number of alleles n in the case of two loci. Bottom panel:
empirical data and analytical curve describing the relationship be-
tween Ps and the number of loci NV in the case of two alleles.
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Because the least upper bound of P(N, n), 17/16, is slightly
larger than unity, we make a minor correction to the above
expression to generate the final model:

+4 n+2
. 17 (4 1
8)  P(N,m)=Min|l,—~—[2]| —[=
®) W, n) - 16 (SJN (2)

One important feature of P(N, n) is the additive nature of
the respective contributions of number of loci and number of
alleles. In other words, according to the proposed model,
there is no interaction between N and n. Figure 9 (top panel)
illustrates the relationships between the predicted population
assignment success P, n, and N. It can be seen that P in-
creases rapidly as a function of N and that it will always be
possible to nearly reach P = 1 by increasing N for any value
of n. Given a moderate average number of alleles per locus,
the expected minimal number of loci to reach high levels of
allocation success (P > 0.90) between two populations is not
overwhelming. In contrast, P is relatively independent of the
average number of alleles per locus. Thus, for any number of
loci, P first increases by augmenting the number of alleles
per locus but rapidly reaches an asymptot at approximately
n = 6. Recall that for any fixed number of loci N, the asymp-
totic value of P is

azll_ﬂNM
M6 |5

Fig. 9. Top panel: analytical model P(N, n) shown as a surface
over the domain (N = 1-10) x (n = 2-10) of values of number
of loci N and number of alleles n. Middle panel: three-
dimensional grid structure representing estimates obtained from
Monte-Carlo simulations of expectancies of allocation success Ps
over the domain (N = 1-10) x (n = 2-10) of values of N and n.
Bottom panel: family of curves showing the discrepancies y be-
tween Ps and analytical values obtained from the model P(N, n).
Each curve traces E(Ps) — P(N, n) as a function of N given a
specific n ranging from 2 to 10.
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Hence, the maximum gain in P from increasing the number

of alleles is oy — P(N, 2), or
N+4 N+4 242 ¢
17_4" 174" 1 :(;) - 0.06

16 5 16 5 2

for any N value. This maximum gain is reached as soon as
n = 6 since
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Fig. 10. Three-dimensional grid structure representing estimates
obtained from Monte-Carlo simulations of variances of allocation
success over the domain (N = 1-10) x (n = 2-10) of values of
number of loci N and number of alleles n.

(

Clearly, increasing the number of alleles per locus beyond
this approximate number of alleles adds little to population
assignment success.

Validation of P(N, n)

In order to validate P(N, n), estimates of E(Ps) were cal-
culated for all possible pairs (N, n) for N varying between 1
and 10 and n varying between 2 and 10. For each pair, we
performed 100 iterations of the following Monte-Carlo sim-
ulation procedure: (1) production of a pair of random allelic
distributions, (2) random generation of 500 specimens for
each population with allelic distribution generated in step 1,
and (3) computation of the proportion of allocation success
Ps. For each (N, n), E(Ps) was estimated from the average of
the 100 individual Ps values. Note that the above procedure
is distinct from the one previously described to generate the
model. The main distinctive feature is the exactness of the
former, due to the systematic generation of the whole set of
genotypes rather than a partial random set. Figure 9 (middle
panel) illustrates the strong structural similarity between the
three-dimensional web of estimates of E(Ps) and the pre-
dicted surface P(N, n). The discrepancy between both esti-
mates is shown in Fig. 9 (bottom panel). The P(N, n)
underestimates E(Ps) for smaller numbers of loci (N < 6)
whereas E(Ps) is overestimated for N > 6. The discrepancy
curves for various values of n are very similar. Hence, the
discrepancy appears to stem essentially from the number of
loci N. Globally, however, the fit between the model and val-
idation data was excellent, since the maximum absolute dif-
ference in allocation success between both methods was less
than 0.03.

Predictive potential of P(N, n)
So far, we have been focusing on the mean values of Ps
distributions to generate and validate the predictive model.
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Fig. 11. Three-dimensional representation of 1000 triplets (N, n,
Ps), each composed of a number of loci N chosen at random
from 1 to 10, a number of alleles n chosen at random from 2 to
20, and of the allocation success Ps resulting from a Monte-
Carlo simulation.
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To assess the potential of P(N, n) for predicting random val-
ues of Ps, however, we quantified the dispersion of the Ps
distributions. The data that served to compute mean Ps esti-
mates in the validation procedure also served to estimate
variances of Ps (Fig. 10). The dispersion of Ps decreases
rapidly as a function of increasing values for both N and n.
Hence, Ps distributions with high mean values will have
lower dispersions, and consequently, higher values of P will
tend to be better predictors. This also indicates that while in-
creasing the number of alleles per locus has little effect on
increasing Ps, this may contribute to lowering the discrep-
ancy between predicted and observed values of assignment
success.

To evaluate specifically the predictive power of P, we ran
additional simulations to produce 1000 individual values of
Ps that were generated as follows: (1) random generation of
N loci, varying between 1 and 10, (2) random generation of
n alleles, varying between 2 and 20, (3) production of a pair
of allelic distributions with N loci and n alleles per locus,
(4) production of 500 random genotypes for each of both
allelic distributions from step 3, and (5) computation of the
proportion of allocation success Ps.

The distribution of the 1000 triplets (N, n, Ps) thus ob-
tained is illustrated in Fig. 11. They show high similarity
with the model P(N, n). The predictive power of P can be
quantified as the percentage of Ps values lying inside the in-
terval (P — €, P + €), where € is a discrepancy value. This
showed that Ps has a probability of at least 0.80 of lying in-
side (P — 0.05, P + 0.05) for any value of P over 0.85. That
is, P predicts Ps + 0.05 whenever P is relatively high. Note
that the 0.05 level compounds the error due to the model and
the inherent variability of Ps.

Practical use of P(N, n)

Suppose one wants to estimate the minimum number of
loci that is necessary to ensure high level of allocation suc-
cess. First, we solve P(N, n) = P for N from eq. 3:
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121n(2) =4 In(5) = In (17 — 4 - 2 —16P)

N(n,P) =
(v F) In(5) =2 In(2)

As an example, take an average number of alleles n = 6 and
a desired level of success Ps = 0.90. Taking into account the
error level 0.05, a conservative strategy is to aim at Ps =
0.90 + 0.05 = 0.95. An estimated minimal number of loci is
N(6, 0.95) = 6. One may also be interested in the minimal
number of alleles per locus n, given some upper limit on the
number of loci. For instance, given N = 7, using the above
technique and a few trial-and-error evaluations of N(n, P),
one finds that n = 3 is sufficient to reach Ps 20.90 in the ma-
jority of cases. We programmed an electronic spreadsheet to
compute minimal triplets (N, n, Ps) over user-defined arrays
of values of n and desired Ps. This spreadsheet is available
at the following internet address: http://www.bio.ulaval.ca/
LBernatchez.html. As for parental allocation, P should be
viewed as a preanalysis predictor. A more accurate after-anal-
ysis estimate of Ps should be sought by running simulations
with the established genetic data.

Discussion

Our main objective was to use a simulation approach in
order to develop multivatiate analytical functions that could
predict population and parentage assignment success as a
function of number and properties of loci. In both cases, we
were able to generate a model with a relatively high predic-
tive power over a wide range of possible situations. Previous
studies have described similar trends in relationships be-
tween the various parameters that we used in this study. In
parentage assignment, for instance, Estoup et al. (1998) ob-
served an increase in allocation success as a function of
number of loci and their probability of exclusion, which is
highly correlated with allelic diversity. In this study, alloca-
tion success also decreased with an increase in the possible
number of matings. Similar trends were also reported by
Marshall et al. (1998) for paternity analysis. The conclusions
of these studies, however, were restricted to observations
made from simulations derived from a restricted set of loci
with specific allelic distribution. For population assignment
studies, Smouse and Chevillon (1998) also reported an in-
crease in allocation success with an increasing number of
loci, although they remained relatively vague on the effect of
numbers of alleles per locus. Furthermore, none of these
studies attempted to explore the multavariate effects of vari-
ous parameters (e.g., allocation success as a function of
number of loci and numbers of alleles per locus). As such,
the present study represents to our knowledge a first attempt
to generate more general models that can be used to explore
the interactive effects of various parameters on allocation
success and also to predict allocation success over a wide
range of conditions, in both parentage and population as-
signment studies.

For parentage assignment, the analytical model was built
so as to reflect the structure of relationships involving the
proportion of successful parental allocation Ps and the triplet
of variables (N, n, Ng). In situations where these parameters
can be evaluated at least approximately before undertaking a
given study, the predictions derived from the model may be
used to decide on a minimal number of loci or average num-

ber of alleles per locus to be used to reach a satisfactory
level of allocation success. Ideally, it would have been desir-
able to take into consideration finer genetic information,
such as specific allelic distribution. In our view, however,
this can hardly be incorporated in preanalysis decision mak-
ing processes. Consequently, our strategy was to develop a
model specifically from normal allelic distributions. Despite
their poor information content, these showed high structural
homology with the whole set of possible allelic distributions.
This means that our model may serve as a general approach
for predicting the functional relationships between Ps and
(N, n, Ng) as well as a lower bound for Ps for all possible
allelic distributions.

A first important prediction of the model was that for any
number of loci, one can always increase the average number
of alleles to reach Ps = 1. The model also predicts that N in-
creases the rate with which # is acting on Ps. Hence, the ef-
fects of n and N are closely linked. A second prediction is
that the number of parents in the population exerts a damp-
ening effect over the number of loci, but this effect decreases
with increasing Ng. Practically, this means that the addition
of an extra locus compensates for ever larger increases in the
number of parents, such that a reasonable number is required
to achieve high allocation success even for relatively high
numbers of possible parents, given sufficient allelic diversity.
For instance, seven loci with an average number of alleles of
13 would be required to reach an allocation success of 0.90
in a population of 300 possible parents (Appendix 1). There
are few empirical data available at this time that could be
compared with the predictions of our model. In an ongoing
study of parentage assignment in Atlantic salmon (Salmo
salar), we found that six loci were sufficient to reach an al-
location success of P = 0.90 in a population of Ng = 75, in
close accordance with predictions (D. Garant et al., unpub-
lished data). Estoup et al. (1998) observed that approxi-
mately four and five loci were necessary to reach P = 0.90,
in situations where the number of parents was approximately
30, and mean allelic diversity was 9 and 14, respectively, for
two different species. This is also in close accordance with
the predictions of our model.

Clearly, however, this model may be improved to take into
account other parameters. Namely, the model is based on
simple assumptions of the Wright-Fisher random mating
model. Note, however, that this mating pattern represents the
most stringent situation for allocation success, since the
number of possible matings for a given number of parents
would be reduced for any other type of mating scheme. A
first and obvious extension would be to consider sexed par-
ents, unequal sex ratio, and various reproductive patterns,
such as factorial and paternity retrieval scheme (Sancristobal
and Chevalet 1997; Estoup et al. 1998). The model could
also be modified specifically for paternity studies in which
maternal—offspring relationships are known or not (Marshall
et al. 1998). In microsatellite studies, allelic scoring errors
are not rare (O’Reilly et al. 1998) and may significantly de-
crease the proportion of allocation success (Sancristobal and
Chevalet 1997; Marshall et al. 1998). At this time, we can-
not predict the effect of the rate of scoring error on Ps, given
specific N, n, and Ng values. Such knowledge would be of
great use for predictive as well as theoretical purposes. To
minimize the negative impact of scoring errors, this investi-
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gation should be led within the framework of an error toler-
ant allocation procedure (Sancristobal and Chevalet 1997),
which excludes few, if any, potential pairs, such that a partly
mistaken offspring genotype may still be correctly allocated.
Finally, the proposed model assumes that all possible par-
ents are identified and genotyped. Clearly, this assumption
will not always be satisfied in wild populations. It will cer-
tainly be of practical concern to be able to predict the loss of
success rate based on at least approximate estimates of the
proportion of missing potential parents (Marshall et al. 1998).

For population assignment, the expectancy of the propor-
tion of population allocation success has been modelled as
P(N, n), a function of number of loci and average number of
alleles per locus in the specific case of two populations. We
observed a relatively high concordance between predicted
and observed proportion of allocation success. Thus, the dif-
ferences between predicted and observed absolute values did
not exceed 0.03 over the range of number of loci and alleles
covered in the study. One important feature of the model is
that it predicts an additive contribution of the number of loci
and number of alleles per locus. For a fixed number of loci,
the contribution of number of alleles to the total proportion
of allocation success never exceeds 6%, and this value is
reached soon, approximately at n = 6. Clearly, the contribu-
tion to allocation success of the number of alleles is largely
outweighed by that of the number of loci N. The structure of
relationships between N, n, and Ps is thus very different
from the one prevailing in the case of parentage assignment
where we observed that the number of alleles could always
be made large enough to get P = 1 and a strong interactivity
between N and n. In brief, while the use of loci with high
allelic diversity is highly advantageous in studies of parent-
age assignment, there is no apparent gain of doing so be-
yond a given level (approximately n = 6) in population
assignment studies. This prediction only stands in a situation
of two populations. Although not explored here, our predic-
tion is that maximum gain will be obtained with values of
n > 6 in situations with more than two populations. How-
ever, the asymptotic relationships between P and n would
most likely remain.

While the contribution of number of loci to allocation suc-
cess largely outweighs that of the number of alleles, we ob-
served that the variance in Ps quickly decreased with an
increase in both n and N, these two variables being practi-
cally interchangeable in this respect. This means that the
predictive precision of the model grows with allocation suc-
cess itself. Consequently, more than 80% of Ps values fell
within the interval (P — 0.05, P + 0.05) when P >0.85. Thus,
an increase in average number of alleles, while adding little
to E(Ps), reduces the uncertainty in predicting allocation
success. On the other hand, this positive asset may poten-
tially be counterbalanced by sampling errors of low fre-
quency alleles that could reduce allocation success when
using maximum likelihood methods (Smouse and Chevillon
1998; Roques et al. 1999). Consequently, we conclude that
the best strategy for optimizing allocation success in studies
of population assignment is to use loci with moderate allelic
diversity, with n varying between 6 and 10 as a rule of
thumb.

As for parentage assignment, the model that we developed
to predict allocation success in studies of population assign-

Can. J. Fish Aquat. Sci. Vol. 57, 2000

ment should be improved to take into account other parame-
ters. In practice, such studies will often involve more than
two populations, and consequently, our model could be ex-
tended to any reasonable number of populations. A prelimi-
nary exploration by simulation approach indicated that the
general structure of relationships between Ps, N, and #n is not
altered with a varying number k of populations. This means
that the generalization of P(N, n) to a suitable P(N, n, k)
should be possible. Also, we did not attempt to predict allo-
cation success as a function of various levels of population
divergence. Clearly, allocation success is expected to in-
crease as a function of population divergence (Paetkau et al.
1995; Smouse and Chevillon 1998; Roques et al. 1999).

To conclude, there is no doubt that in the years to come,
the use of individual multilocus information will increas-
ingly contribute importantly to our knowledge of fundamen-
tal issues of the biology of aquatic organisms. Such
information will in turn contribute to improving manage-
ment, conservation, and production practices. The use of
predictive tools, such as the first generation of models devel-
oped here, should contribute to maximizing the returns of
such applications by increasing our understanding of interac-
tions among the various variables affecting allocation suc-
cess and by allowing the adjustment a priori of the required
levels of resolution and, consequently, optimizing the costs—
benefits ratio in the use of molecular markers.
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Appendix 1. Minimum number of loci to reach at least 90% of
successful allocations as Ny, Ng, 0.83) rounded to the nearest

integer

Number Number of parents

of alleles 50 100 150 200 250 300
2 32 37 40 41 1 e
4 13 16 17 18 18 2
6 9 10 11 12 12 0
7 8 9 10 10 10 i1
14 5 5 6 6 6 6
15 4 5 6 6 6 6
16 4 5 5 6 6 ‘
17 4 5 5 5 p ‘
18 4 5 5 5 5 s
19 4 4 5 5 5 s
20 4 4 5 5 5 s

Appendix 2. Maximum likelihood parental allocation procedure

Compute the likelihood of an offspring genotype for each pair of parental genotypes
Given the offspring genotype

Go = ([R1, R2], [R3, R4], [R5, R6]....)
and the two parental genotypes

Parl = ([M1, M2], [M3, M4], [M5, M6],...)
Par2 = ([F1, F2], [F3, F4], [F5, F6],...)

we first compute the following for locus 1:

Pr = (1/2pr(M1 — R1) + 1/2pr(M2 — R1)) x (1/2pr(F1 — R2) + 1/2pr(F2 — R2)) + (1/2pr(F1 — R1) + 1/
2pr(F2 — R1)) x (1/2pr(M1 — R2) + 1/2pr(M2 — R2))

where
pr(A > B) =1if A =B, =0 if A # B, assuming mendelian transmission.

The likelihood L1 of Go genotype at the first locus among the possible progeny of the parental pair (Parl, Par2) is
L1 = Pr if locus 1 is a heterozygote for Go
L1 = Pr/2 if locus 1 is a homozygote for Go.

The global likelihood of Go, given the parental pair (Parl, Par2), is the product of all single locus likelihoods:
L(Go) = L1 x L2 x L3 X... X Ln.

The above computation has to be done for each potential parental pair.

Allocation of offspring Go

Once the set of all likelihoods (one to each parental pair) has been calculated, the highest one is retained. If this maximum
belongs to a single parental pair, the offspring is allocated to the latter; otherwise, it is not allocated. Lack of allocation is
equivalent to an incorrect allocation when estimating Ps by running Monte-Carlo simulations.
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