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Chapter 8
Individual-based Genotype Methods
in Aquaculture

Pierre Duchesne and Louis Bernatchez

Introduction

DNA marker technologies have revolutionized the way aquaculture genetics research
is being conducted (Liu and Cordes 2004). Early on, most applications of molecular
genetics in aquaculture relied on the estimation of demographic parameters of diver-
sity and differentiation that were derived from averaging the genetic composition
over populations or stocks. It has been recognized for nearly 25 years, however, that
further knowledge of relevance for stock management and production may be
obtained from the analysis of individual-based genotypic information (Smouse et al.
1982). The blooming development of new genetic markers over the last decade,
namely variable number of tandem repeat loci (especially microsatellites), Amplified
Fragment Length Polymorphism (AFLP), and Single Nucleotide Polymorphism
(SNP) have revived a major interest in studies based on the definition of individual
multilocus genotypes, and opened exciting avenues of research and applications.
Basically, studies of relevance for aquaculture and based on the analysis of individual
multilocus genotypes can be grouped into three broad categories of applications:
parentage (including kinship), group allocation, and hybrid detection.

Parental allocation studies necessitate the assessment of parental relationships within
populations, which may be achieved in various ways, including the use of exclusion prob-
ability, likelihood methods, and categorical and fractional parental assignment (reviewed
in Wilson and Ferguson 2002, Jones and Ardren 2003). Parental allocation improves the
efficiency of selective breeding programs in many ways, namely the following:

* establishing selected strains without having to keep families in separate tanks
(Wilson and Ferguson 2002)

* investigating parent to offspring transmission of illness or parasitism

* assessing fertilization success (Selvamani et al. 2001)

* measuring reproductive success variance among breeders (Jackson et al. 2003)

* avoiding mating between closely related individuals and thus minimizing inbreed-
ing (Ferguson and Danzmann 1998, Jackson et al. 2003, Norris et al. 2000)

 improving heritability estimates of desirable traits (Ferguson and Danzmann 1998,
Vandeputte et al. 2004)

* allowing a higher rate of genetic improvement because it becomes possible to iden-
tify the progeny of parents with desirable or undesirable characteristics (Wilson
and Ferguson 2002).

Studies of group allocation (also called “assignment methods”) typically imply the
determination of population membership of single individuals (Manel et al. 2005).
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1 This consists of assigning an individual to the population in which its multilocus geno-
2 type has the highest probability of occurring. Such estimation may be relevant to more
3 precisely quantify gene flow and the degree of differentiation between stocks, quanti-
4 fying the admixture proportion of different stocks in a sample of individuals of
5 unknown origin such as wild versus cultured (Miggiano et al. 2005), or enhancing
6 traceability for trade control purposes in animals and products, and thus allow con-
7 sumers to obtain information on the origin and the production chain of food products
8 (Liu and Cordes 2004, Hayes et al. 2005).

9 In aquaculture, genetic group allocation may be used to identify species or strain
10 membership of specimens. Such identifications are useful both at the input and out-
11 put end of production facilities. For instance, controlling for possible admixture in
12 purebred populations can be done in an objective fashion when based on solid genetic
13 data. Allocation can also reveal proportions of wild versus cultivated specimens in the
14 marketplace or in a natural system undergoing invasion by farmed escapees or delib-
15 erately stocked by a nonnative strain. Coarse traceability can also be performed when
16 distinct production organizations are associated with distinct strains.

Hybridization between or within species is both a common natural phenomenon
and the consequence of mixing due to human-related activities, including aquacul-
ture, and stocking of domesticated fish (Congiu et al. 2001, Vaha and Primmer 2006).
Identification of hybrid individuals is often a necessary first step in the implementa-
tion of management strategies, such as breeding or translocation programs for threat-
ened species since, it allows the removal of morphologically indistinguishable hybrid
individuals from the wild population or the identification of indigenous individuals
for breeding programs (Hansen 2002, Manel et al. 2005, Vaha and Primmer 2006).
Early identification of hybrids may help reduce the impact of introgression between
cultured and wild fish (Morizot et al. 1991, Young et al. 2001). Also identification of
hybrids can impact trade by detecting hybrid production labeled as purebred, for
example, sturgeon caviar (Congiu et al. 2001).

Because these issues have been treated in several recent reviews, our intent here is
not to address the suitability of various molecular techniques, nor is it meant to review
the empirical applications of individual-based genotype analyses. We do not wish to
provide an exhaustive guide or detailed treatment to the existing analytical methods
or related computer software packages. Instead, our main goal is to explain the basics
of statistical principles and applications of specific methods that we have developed
and applied in our laboratory over the recent years. In an attempt to render the chap-

36 ter content easily accessible to the nonstatistician scientists, we have deliberately
37 opted for verbal explanations rather than relying on the treatment of mathematical
38 complexity and equations.

39

40

j; Parental Allocation

43

44 Definition and General Principles

45

46 The objective of a parental allocation process based on genetic information is to find
47S parental genotypes corresponding to the true parents of each of a set of offspring geno-
48N types. In some contexts, it is known in advance that the genotypes of all the parents
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involved in the generation of the set of offspring are included in the collection of the
putative parental genotypes. If that is the case, then the allocation system, comprising
parental and offspring genotypes, is said to be closed. When some parental genotypes
are missing, the allocation system is said to be open. Despite obvious similarities, the
allocation problems for closed and open systems turn out to be quite different, the latter
being more complex.

The two main factors affecting the performance of a parental allocation process
are the number of potential parental pairs and the genetic contents of the genotypes.
Performance decreases with the size of the parental set while it increases with genetic
contents. Other important performance factors are the relatedness level of the
parental set, accuracy of genotype scoring, and sexing of potential parents. Closely
related potential parents tend to be more similar than unrelated parents resulting in a
higher probability of misidentification. Whenever possible, it is generally advanta-
geous to sex parents since this reduces by at least one half the number of potential
parental pairs to be considered (Wilson and Ferguson 2002).

Markers

In theory, any type of marker can be used for performing parentage allocation. How-
ever, microsatellites are currently the most popular because of their potential for high
variability even among individuals of the same strain (Liu and Cordes 2004). For
instance, using eight highly variable microsatellite markers, Norris and others (2000)
correctly allocated 95% of offspring from more than 12,000 potential parental pairs.
Generally, codominant markers are best suited for parental allocation since allele
transmission from parent to offspring is never masked by allelic dominance. The use
of diploid codominant markers will be assumed throughout the following discussion.

Scoring Errors: Effects and Modeling

Here a scoring (transmission) error is defined as the result of mistaking a specific allele
for another one. While scoring microsatellites, it is estimated that errors occur at a rate
of 0.5 to 3%. Erroneous allocations due to scoring errors are not likely. The main neg-
ative effect of erroneous allele scores is possible loss of correct parental allocations.
The probability that a genotype contains at least one scoring error increases rapidly
with number of loci. Therefore, as one increases the information genetic contents by
adding extra loci, one is also increasing the proportion of erroneous genotypes and
thus leading to a larger proportion of incorrect allocations. This dilemma can be bro-
ken by integrating an appropriate scoring error model within the allocation process.

Within closed allocation systems, the negative effect of scoring errors can be
completely neutralized by allowing a small nonzero probability estimate to the scoring
of allele X as any distinct allele Y. The uniform error model (see definition below)
provides such an error-catching mechanism. The transmission error probability (&)
estimate does not have to be accurate; estimates of say 1%, 2%, and 3% for & will have
the same effect on the allocation output.

The transmission error probability can be distributed in several ways over (erro- S47
neous) alleles. However, it is well known that scoring errors usually involve alleles that N48
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1 are close to the true allele. This information can be fed into error modeling through the
2 following formalization. Suppose the parental allele X is referred to as the focal allele.
3 Then the distance between any allele Y and X can be measured in terms of number of
4 offsets, that is, the difference between Y and X divided by the smallest allelic distance
5 between any two alleles found in the locus (Figure 8.1). For instance, if a locus is of type
6 tetra (nucleotide) then Y = 172 is —2 offsets away from X = 180.

7 The uniform error model is the simplest error model. It distributes e uniformly
8 over all possible nonfocal alleles. Restricted error models distribute e over close
9 neighbors of the focal allele. The examples of a *£1 offset model and a *2 offset
10 model are shown in Table 8.1.

11

12

:: Allocation Methods in Closed Systems

:2 Basically, parental allocations can be based either on likelihood or on exclusion.

Likelihood

Given an offspring, the likelihood of a specific parental pair is essentially a measure of
the probability that this pair has generated the offspring. There are three possible out-
puts associated with the allocation of a particular offspring. When only one parental
pair has the largest likelihood, the offspring is allocated to the parental pair with the

focal allele

parent 236

offspring | | | | | | |
npb 230 232 234 236 238 240 242

36 offset -3 -2 -1 0 1 2 3
2; Figure 8.1. Measuring a transmission error in offset units. The distance between any allele Y

and X is measured in terms of number of offsets (i.e., the difference between Y and X divided

39 by the unit distance [smallest allelic distance between any two alleles found in the locus]).

40

41

42

43 Table 8.1. The examples of a =1 offset model and a =2 offset model.

44

45 —2 offsets —1 offset 0 offset = focal allele +1 offset +2 offsets

46 0.002 0.01 0.98 0.01 0.002
0.008 0.98 0.008

47S

48N
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largest likelihood. When several parental pairs share the largest (nonzero) likelihood,
the offspring is not allocated but the output is scored as ambiguous. When all parental
pairs have zero likelihood, the offspring is not allocated and the output is scored as null.
Although most allocation programs do not distinguish explicitly between ambiguous
and null outputs (both are scored as nonallocations), this distinction allows the compu-
tation of three system-based allocation statistics: proportions of offspring that have
been scored as allocated, ambiguous, and null. These statistics turn out to be very useful
in the context of the overall assessment and subsequent improvement of an allocation
system. For instance, any proportion of ambiguity, except negligible, is indicative of a
lack of resolution (i.e., insufficient genetic contents). In such cases, the only cure is to
add one or several loci to the existing set until all ambiguity disappears.

Within closed systems, allocations should usually be performed with the uniform
error model since it can absorb all kinds of errors including those generated by null
alleles scored at any offset distance from the focal allele. The only drawback of the
uniform model is that it may, though not necessarily, increase the proportion of off-
spring classified as ambiguous. This can be corrected by using a nonuniform error
model but more efficiently by adding one or several loci.

Exclusion

Exclusion-based allocation is based on the idea that as information accumulates, only
real parents remain after all other potential parents have turned out to be impossible
candidates. Exclusion-based allocation should generally not be used in closed systems
since it takes far more genetic information to exclude the set of false parents than to
find the most likely pair. Unless otherwise stated, we will thereafter refer to likeli-
hood-based allocation. Exclusion will be further discussed in the context of open sys-
tem allocations.

Breeding Designs (Closed Systems)

Sometimes the offspring from blocks of breeders are put together in a single tank.
Block matings generally reduce the total number of potential parental pairs as com-
pared with allowing all adults to breed together. This reduction could translate subse-
quently into a reduced number of loci necessary to reach a satisfactory level of
allocation correctness. Provision has been made in the last version of Package for the
Analysis of Parental Allocation (PAPA) software (Duchesne et al. 2002) to allow defi-
nition of blocks of breeders reflecting breeding designs in aquaculture settings. Dis-
tinct blocks may share specimens and they may be sexed or unsexed.

Validation of Allocations in Closed Systems

Allocation to a parental pair may not always be correct. Ideally one should be able to
test the correctness rate (CR), that is, the proportion of correct allocations over all S47
N48
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1 allocations, not all offspring, by checking the allocations against empirical evidence.
2 However, under most circumstances, establishing parental connections through
3 direct observation even in hatchery fish can prove very difficult and expensive. It is
4 therefore customary to use simulations to estimate correctness rates. Also, simula-
5 tions are useful when it comes to deciding on a set of loci sufficiently informative to

6 reach a satisfying level of CR.

7

8 , .

9 Preparental and Parental Simulations

Basically there are two types of parental allocation simulation procedures. One proce-
dure (preparental) generates artificial parental genotypes from allelic frequencies (esti-

12 mated from samples) and then artificial offspring from these parents (Figure 8.2).
13 Another procedure (parental) uses the genotypes of real, collected parents. Preparental
14 simulations are useful to decide on a minimal set of loci to attain the desired correctness
15 rate even before parents and offspring have been collected. Preliminary choice of a suf-
16 ficient set of loci can save lab work and resources. However, preparental simulations
17 tend to underestimate minimal genetic information contents mainly because it gener-
18 ates sets of totally unrelated parents. Sets of real parents, especially when drawn from a
;(9) hatchery population, may contain several subsets of highly related specimens. There-

fore, it might be safer to add an extra locus to the minimal set found from preparental
simulations especially when the targeted correctness level is barely reached.

To estimate correctness rates more precisely, parental simulations should be run
when the set of collected parents has been genotyped. Parental simulations are not
biased by the relatedness structure of the parental set.

generation of artificial parental genotypes

30

31 2

32 —_ .

33 generation of random mating i.e. choice of mates and alleles

34 artificial offspring I

35 genenotypes allelic transmission according to production error model

36

37

38 v

39

40 offspring allocation according to allocation error model

41

42 v

32 computation of correctness rate

45 Figure 8.2. Preparental simulator procedure. The preparental procedure generates artificial
46 parental genotypes from allelic frequencies (estimated from samples) and then artificial off-
478 spring from these parents. The parental procedure is similar except that it uses the genotypes of
48N real, collected parents.
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Production and Allocation Error Models

To estimate correctness rates more realistically, the production of artificial offspring
during simulations has to mimic scoring errors. Therefore, there is a need for a pro-
duction error model. The production error probabilities associated with various num-
bers of offsets do not have to be very accurate although they do impact on correctness
rate estimations. After artificial offspring have been generated, they are processed for
allocation. As with true offspring, an allocation error model is used to capture scoring
errors. Ideally one should be able to define production and allocation error models
separately. Allocation error models in simulations should generally be the same as the
one used in allocating real offspring.

Likelihood and Exclusion Methods in Open Systems

Likelihood

Allocation in open systems poses a double problem (i.e., identify true parents that
belong to the collected parental set and identify uncollected parents as uncollected).
Likelihood-based allocation can be very efficient in solving the collected parent prob-
lem but is liable to mistake an uncollected parent for a collected one (i.e., overallo-
cate). Overallocation increases sharply with the proportion of uncollected parents.
With more uncollected parents, there is a higher probability that collected specimens
are sufficiently similar to uncollected parents to become likely candidates for (erro-
neous) allocation. This problem is more acute with methods allowing a nonzero prob-
ability for any kind of scoring error, which translates into nonzero likelihood for all
possible parental-offspring genotype combinations. The overallocation probability
can only be assessed when a reasonably accurate estimate of the missing part of the
parental set is available (Wilson and Ferguson 2002). Unfortunately, likelihood-based
allocation cannot provide such an estimate on the basis of the available genotypes. In
short, likelihood methods in open systems tend toward overallocation, the extent of
which cannot be safely estimated without a (generally lacking) reliable estimate of the
uncollected portion of the parental set.

Exclusion

The drawbacks of likelihood-based methods in open systems have led some
researchers to resort to the exclusion allocation method. This method essentially
compares the genotype of each potential parent with that of the offspring. Parental
genotypes are excluded as soon as both offspring alleles are absent on a single locus of
the parental genotype. In addition, no more than two nonexcluded parental geno-
types have to remain for the allocation to be performed. The idea is that, given
enough loci, nonparental collected specimens will eventually be excluded on at least

one locus.
The exclusion method has several drawbacks. It is very costly in terms of genetic S47
information since most excluded candidates would have been discarded on account of N48
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1 low likelihood based on much less powerful sets of loci. Since scoring errors are more
2 numerous with each additional locus (Jones and Ardren 2003), it is plausible that a
3 substantial number of genotypes will contain at least one error. Such errors are very
4 likely to provoke the loss of one or several allocations especially when parental geno-
5 types are erroneous. Some researchers have suggested tolerance for mismatches not
6 exceeding a predetermined number. However, mismatches may also come from a
7 truly nonparental genotype. Therefore, this less stringent version of exclusion, while it
8 does reduce the probability of erroneous exclusion, also increases the probability of
9 retaining nonparental combinations (i.e., erroneous allocations). This tradeoff
10 between two types of errors cannot be easily assessed in the absence of a sound esti-
11 mate for the missing proportion of uncollected parents. Therefore, the choice of a
12 number of tolerated mismatches is largely arbitrary.

13 To alleviate the stringency of the exclusion method resulting in overexclusion,
14 another approach is sometimes used that includes rescoring a nearly perfectly match-
15 ing genotype. The idea is to see if some scoring error might not be the reason for miss-
16 ing an allocation by so little. Although this method does make some sense, it is prone

to self persuasion and is certainly not amenable to correctness analysis. Briefly stated,
exclusion methods tend to miss sizable numbers of true parents and do not lend them-
selves to rigorous evaluations of correctness rates. They would be efficient if based on
a very informative set of loci and extremely accurate genotypes. These two conditions
are not generally met except in some forensic contexts.

The PASOS Approach (Open Systems)

Likelihood-based methods lean toward overallocation whereas exclusion methods
tend to overexclude (i.e., eliminate true parents). The PASOS software (Duchesne
et al. 2005) uses a mixed approach by first picking up the most likely parental pair(s)
among all potential pairs based on a uniform scoring error model that ensures that at
least one most likely pair is listed. When several most likely pairs are found, the first
one in the list is retained. Then an extended exclusion method is applied to the two
genotypes of the retained most likely parental pair.

Extended Exclusion Method

36

37 The extended exclusion method used by PASOS compares each of the locus geno-
38 types of the two putative parents together with that of the offspring. From these three
39 genotypes, a transmission scenario (Figure 8.3A) is built that associates each off-
40 spring allele to a parental allele. Such scenarios are built from a set of rules that aims
41 at restoring the most probable allelic transmission pattern, taking the three genotypes
42 together. Once the two most likely parent-to-offspring allele pairs have been deter-
43 mined, the distance in offset units is computed for each pair. Any allelic distance
44 exceeding the maximum offset tolerance (MOT) specified by the user provokes the
45 exclusion of the corresponding putative parent (Figure 8.3B). Therefore, there may
46 be zero, one, or two parents excluded at each locus. It suffices that the offset tolerance
478 be exceeded on a single locus for the putative parent, relative to the offspring cur-
48N rently processed, to be discarded.
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Figure 8.3A. Allelic transmission scenarios: Allelic transmission scenarios are built from a set 12
of rules that aims at restoring the most probable allelic transmission pattern, taking the two 13
parental and the offspring genotypes simultaneously into account. 14
15
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17
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offset -3 -2 -1 0 1 2 3
mor=1 | | || | | |
offset -3 -2 -1 0 1 2 3
mor=2 | || | | | |
offset -3 -2 -1 0 1 2 3 3 -
36
Figure 8.3B. Tolerance net as defined by MOT: Any allelic distance exceeding the maximum 37
offset tolerance (MOT) specified by the user provokes the exclusion of the corresponding puta- 38
tive parent. ~c
39
40
41
. 42
Rationale 13
The two-step allocation approach implemented in PASOS is based on the following 44
rationale. If the two real parents of an offspring belong to the collected set of potential 45
parents, the probability that they will be selected during the likelihood phase will 46
increase with genetic information contents (i.e., with number of loci). If they have been S47
genotyped with scoring errors within the bounds of the maximum offset tolerance, N48
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Figure 8.4. Extended exclusion of a false parent. The probability that a nonparental member
of the most likely parental pair be eliminated increases with number of loci.

then they will most probably not be discarded during the exclusion phase. If only one
parent belongs to the parental set, it will probably be part of each of the most likely
pair(s) and thus of the first pair listed. The probability that the nonparental member of
the most likely pair be eliminated during the exclusion phase will increase with number
of loci (Figure 8.4). If none of the two parents belongs to the set of collected parents,
then the most likely pair will contain false parents both of which will eventually be dis-
carded as the number of loci increases.

Sequence Allocation (Allocation) and Proportion of Missing Parents

36

37 When PASOS is run sequentially with one, two, three, etc., loci from the allocation
38 set, it makes less and less allocations and eventually reaches a stable or near stable
39 proportion of allocations (Figure 8.5). This happens when false parents have been
40 purged by the extended exclusion procedure. The remaining proportion of allocations
41 may then be taken as an estimate of the proportion of missing parents. The precision
42 of the latter estimate depends on the assumption that the collected parental set
43 comprises specimens that have truly participated, no matter how successfully, in the
44 breeding event at the origin of the offspring sample. If the parental set is inflated
45 with individuals not involved in reproductive events, then the number of missing
46 parents will likely be overestimated. Clearly, precision of the estimate should
478 increase with the size of the offspring sample. The estimated number of missing par-
48N ents must be fed into simulation runs to obtain estimates of the correction rates.
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Figure 8.5. Sequence allocation curve. When PASOS is run sequentially with one, two, three. . . 13
loci from the allocation set, it makes less and less allocations and eventually reaches a stable or 14
near stable proportion of allocations which the user may then use to estimate the number of 15
uncollected parents. 16
17

18

19

Automatic sequence allocation (i.e., with one, two, three or more loci) is imple-
mented in PASOS.

Due to its use of restricted error modeling, PASOS should only be used when scor-
ing is of good quality (i.e., does not generally exceed two offsets from focal alleles).
Also, the set of loci should be tested for the presence of null alleles and all loci sus-
pected of containing null alleles should be dropped.

Validation of Allocations in Open Systems

29

The estimation of the correctness rate within any open allocation system depends 30
heavily on the estimated number of missing parents. In fact, the larger the set of miss- 31
ing parents, the higher the probability that some of their offspring will be mistaken for 32
offspring from the collected parental set. Unfortunately, the number of missing par- 33
ents often is difficult to estimate under most settings and so estimates have typically 34
been guessed in the past. 35
However, recent developments in allocation techniques that combine likelihood 36
with exclusion approaches (PASOS) now make it possible to obtain reliable estimates 37
of the missing part of the parental set. Once the sequence allocation of the sample of 38
real offspring has produced a (nearly) stable allocation rate curve, an estimate of the 39
proportion of missing parents is available. The latter can then be fed into parental 40
simulations for obtaining a sound estimate of the correctness rate associated with the 41
specific allocation system. 42
Preparental simulations should be run whenever possible to find minimal sets of 43
loci. Since the missing part of the parental set cannot be estimated genetically prior to 44
parent collecting, care should be taken to use both optimistic and pessimistic scenar- 45
ios corresponding to lower and higher proportions of missing parents, respectively. 46
Again, minimal sets of loci should preferably be complemented by an extra locus in S47
case the real parental set comprises highly related specimens. N48
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1 Features to Look for in Parentage Allocation Programs
2
3 In closed as well as open allocation systems, programs should provide simulation
4 facilities. Simulations are usually the only way to obtain a sound estimate of the cor-
S rectness rate or accuracy of the system (i.e., the proportion of correct allocations
6 among all allocations). In addition, one should be able to run the simulator on both
7 preparental and parental modes. One should be able to run programs either with
8 sexed or unsexed parental sets since sexing in fish cannot always be done easily
9 and reliably.
10
: ; Closed Systems
13 In closed systems, programs should provide distinct statistics for ambiguous and null
14 outputs. The proportion of ambiguous outputs is a direct measure of the capacity of
15 the set of loci to perform the allocation task under way. An error model that provides
16 nonzero probability for any possible scoring error such as the uniform error model
17 should suffice under most circumstances. However, with reliable scoring and absence
18 of null alleles, the use of a restricted error model allowing for a limited number of
19 error offsets could save on the number of loci without significantly reducing the num-
20 ber of allocations. A mechanism for defining blocks of breeders reflecting breeding
21 designs in aquaculture settings is desirable. Block definition can increase resolution
22 power of a set of loci and reduce the probability of incorrect allocations.

Open Systems

In open systems, uniform error modeling can lead to overallocation since parent-
27 offspring mismatches can also originate from an incorrect allocation. On the other
8 hand, zero error tolerance is very likely to provoke losses of allocations especially as
29 the number of loci is increased. Restricted error modeling is a means to distinguish
30 between scoring errors and erroneous allocations without dropping a significant
31 proportion of true parents. Restricted error modeling is currently implemented in
30 PASOS. The most important features for parental allocation programs are described
33 in Figure 8.6.
34
35
36 Some Available Programs
37
38 Some of the currently available programs with respective allocation methods follow:
Zg e CERVUS (Marshall et al. 1998) (likelihood)
A1 * FAMOZ (Gerber et al. 2002) (likelihood)
1 » KINSHIP (Goodnight and Queller (1999) (exclusion), (Danzmann 1997) (exclusion)
43 * NEWPAT (Wilmer et al. 1999) (exclusion)
4"4 * PAPA (Duchesne et al. 2002) (likelihood/closed systems)
45 * PARENTE (Cercueil et al. 2002) (likelihood)
46 * PASOS (Duchesne et al. 2005) (likelihood + extended exclusion/open systems)
478 All of these freely available programs can be downloaded at http://www.bio.ulaval.
48N ca/louisbernatchez/links.htm.
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General
both pre-parental and parental simulations are available
simulations and allocations may be run with sexed or unsexed parental sets
Closed systems
distinction is made between null and ambiguous non-allocation statistics
scoring error may be distributed over all non-focal alleles e.g. uniformly
parental files can be structured according to block mating designs
restricted error models may be user-defined
Open systems

restricted error models are available and user-defined
a means to estimate the number of uncollected parents is provided

Figure 8.6. A list of most important features for parental allocation programs.

Group Allocation (Species, Population, or Strain Identification)

Definition and General Principles

Species, population, or strain identification of individuals on the basis of genetic data
is technically the same and will thereafter be referred to as group allocation. Only
those allocation situations will be considered where each purebred group has been
sampled so that fairly accurate estimates of allelic frequencies for each genotyped

locus and each purebred group are available (baseline samples). 30

Some recent developments aim at allocating individuals from mixed samples without 31
prior sampling of group purebreds. Those so-called clustering techniques essentially 32
tend to partition a given mixed sample into subsamples to minimize (or maximize) some 33
statistic associated with population structuring (e.g., linkage disequilibrium). Allocation 34
from good baseline samples produces verifiable results within a small fraction of the 35
computation time required from clustering methods. Moreover, currently used cluster- 36
ing methods tend to perform poorly when group differentiation is weak (Waples and 37
Gaggiotti 20006), a very serious handicap when it comes to strain identification. Finally, 38
they do not provide ad hoc means to estimate the accuracy of their allocations and 39
involve considerable uncertainty (Manel et al. 2005). Given the above drawbacks of 40
clustering methods, they will not be discussed any further since baseline samples are 41
available for most group allocation tasks within aquaculture settings. 42

The idea underlying group allocation of an individual genotype (G) is rather 43
simple. In its simplest version, the probability (likelihood) that G could be found 44
within a group is computed for each possible group and then G is allocated to the 45
group with highest probability. Since such probabilities are often very small, they 46
are usually expressed in logl0 format and comparisons between two populations as S47
log-likelihood ratios. For example, if G is 1,000 times more likely to be found within N48
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1 population A than it is within population B, the log-likelihood ratio of A relative to B
2 is equal to three.

3 Within a given allocation task, a minimal log-likelihood ratio (threshold) between
4 the most likely and the next most likely group is defined. If the threshold is not
5 reached for G, it is simply not allocated and classified as nonallocated. For instance,
6 a log-likelihood threshold of two would mean that no individual genotype should be
7 allocated if it is not at least 100 times more probable within the most probable group.
8 The log-likelihood threshold turns out to be an important allocation parameter. Gen-
9 erally, raising the threshold increases the probability of allocating correctly (accuracy)
10 but decreases the number of genotypes being allocated (allocation rate). Care should
11 be taken to choose an appropriate threshold for the task under way.

12 Another important aspect of group allocation is the question of ghost groups
13 (i.e., groups that have not been sampled as purebreds since they have not yet been
14 identified but which may be represented within the sample of individuals to be allo-
15 cated). Ghost groups are much more likely when allocations involve wild populations.
16 When it is suspected that ghost groups might exist, one should test whether G might

not belong to such an external yet undefined group. This can be done through an
exclusion procedure based on membership P values computed from simulations.
(See the Simulations section.)

Markers

As in parentage allocation, any type of marker (RFLP, RAPD, AFLP, microsatellite)
can be used for performing group allocations. However, very high polymor-
phism (number of alleles/ locus > 10) does not add substantial allocation resolution
when compared to less variable loci. Here, the most important characteristic of a set of
loci is sheer number (Ferguson and Danzmann 1998, Bernatchez and Duchesne 2000,
Hayes et al. 2005). Therefore, when it comes to distinguishing several weakly differen-
tiated groups (e.g., strains), markers available in virtually unlimited numbers are the
best candidates even when each locus has low information content. For such heavy
allocation tasks, AFLP markers are currently the most appropriate choice except when
a sufficient set of microsatellites already exists (Campbell et al. 2003).

36

37 Scoring and Sampling Errors

38

39 With dominant markers such as AFLP, allele should be taken as an equivalent for pres-
40 ence/absence in the following discussion. Generally speaking, scoring errors within
41 their usual range (0.5 to 3%) have little impact on group allocation. However, special
42 care should be taken when scoring purebred samples especially when small (>20). As a
43 rule of thumb, purebred samples should contain at least 20, but preferably 30, speci-
44 mens to obtain reasonably accurate frequency estimates (Ruzzante 1998). Smaller
45 samples might still be used especially when dealing with highly differentiated groups.
46 When using highly polymorphic microsatellite loci with large numbers (>15) of low
478 frequency alleles, sample sizes should be increased accordingly (e.g., to 50 specimens).
48N Note that the low frequency of an allele can suddenly double following sampling of a
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single extra copy (Roques et al. 1999). To obtain truly representative purebred
samples, sampling should be done as randomly as possible. In particular, overrepresen-
tation of specific families should be avoided.

A special sampling problem arises when some allele is totally absent from one or
several purebred samples while present in other purebred samples or the (mixed)
sample to be allocated. Customarily, the frequency of a missing allele within a pure- 6

DB~ W=

bred sample was estimated at 1/(N+1) (N = number of scored alleles within sample). 7
This amounts to the expectation that the next allele would be the missing one (maybe- 8
next-allele formula). Another approach consists of fixing the missing allele frequency 9
at some user-defined low value (e.g., 0.01). Practically, missing allele frequency esti- 10
mates have little impact on the result of an allocation task. If one favors the fixed low 11
value approach, then this value may be seen as an allocation parameter and its value 12
may be chosen to maximize the correct reallocation rate. 13

14

15
Validation of Group Allocations ig
The accuracy of group allocations, that is, the estimated proportion of correct alloca- ig

tions over all allocations (excluding non-allocated specimens), can be assessed
through reallocation and simulation procedures (Figure 8.7).

Reallocation

The reallocation procedure allocates the purebred specimens among the candidate
groups as if their group membership were unknown. The latter condition means that
each time a purebred specimen is (re-)allocated, the allelic frequencies of its group are
recalculated as if it did not belong. This precaution aims at eliminating the bias resulting
from the specimen actually weighing on frequency estimates and, as a consequence,

artificially increasing the probability of being allocated to its proper group. These as if 29
frequency recalculations are usually referred to as the leave-one-out procedure. 30
31

32

re-allocation 33

simulation

36
37
38
39
40
41
42
4 \ 43
\ g \ ! 44
~=-=-7 S-- 45
Figure 8.7. Validation procedures in group allocation. The reallocation procedure allocates 46
the purebred specimens among the candidate groups as if their group membership were S47
unknown. To estimate accuracy from simulations, artificial specimens are generated randomly, N48
based on the allelic frequencies derived from purebred samples.

random generation

o



40045 Ch 08 087-108 1/31/07 8:30 PM Page 102 $

102 Aquaculture Genome Technologies

1 Reallocation of purebreds is usually a very reliable way of estimating accuracy. One
2 important advantage of reallocation oversimulations is that it takes scoring errors
3 automatically into account. On the other hand, accuracy estimates from reallocation
4 may be biased upward when purebred samples include highly inbred specimens
5 (e.g., full and half-siblings). Thus, the quality of accuracy estimates from reallocation is
6 somewhat sensitive to the quality of purebred group samples. Low reallocation rates
7 may result from very poor scoring, a lack of resolution due to poor genetic content
8 relative to group differentiation, or even from an absence of real differentiation
9 (i.e., from samples not actually representing distinct biological entities).

10

11

12 Simulations

13

ig’ Estimations of accuracy can also be obtained from simulations. Artificial specimens

are generated randomly, based on the allelic frequencies derived from purebred
samples. The simulators currently built into population (group) allocation programs
do not allow mimicking of scoring errors. Consequently, accuracy may sometimes be
slightly overestimated from simulations since scoring errors do increase the probabil-
ity of misallocating real genotypes. One important advantage of simulations over real-
location is their potential for spanning a very large range (e.g., tens of thousands of
possible genotypes from each group). Therefore, genotypes from prospective mixed
samples get a more complete coverage by simulations than they do from reallocation.
Besides accuracy estimations, simulations are sometimes used to obtain likelihood
distributions from each purebred sample. Each group likelihood distribution is
obtained by producing a large number of artificial genotypes, based on the group
allelic distributions, and then the likelihoods associated with the genotypes. There-
after, the group-specific likelihood distributions may be used to produce a group
membership P value for each genotype of a mixed sample. Some allocation programs
actually use group membership P values by excluding each candidate groups with
membership P value lower than a predefined threshold. When the allocation proce-
dure is based on likelihood ratios, membership P values can still be useful to detect
ghost groups: when membership P values are very low (e.g., >0.001) for all potential
groups considered, the presence of at least one ghost group may be suspected.
Another usage of simulations is the adjustment of the likelihood ratio allocation
threshold. Sometimes a proportion of artificial genotypes are misallocated indicating

16

36

that there is a nonnegligible probability that real genotypes may also be misallocated.
37 This problem can be solved to a large extent by raising the likelihood ratio allocation
38 threshold until misallocation of simulated genotypes vanishes. Note however that this
39 will generally be associated with a rise in the proportion of nonallocated real and
40 simulated genotypes.
41
j:% Reallocation Versus Simulation Accuracy Estimates
44 Accuracy estimates from reallocation and simulations should be close. However, if
45 the estimated accuracy from reallocation is substantially lower than that from simula-
46 tions, it is probably due to unusually numerous scoring errors. On the other hand,
478 higher accuracy estimates from reallocation could reflect highly inbred portions of
48N samples (e.g., families).
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Features to Look for in Group Allocation Programs 1
2

Reallocation of purebred genotypes, allocation of mixed samples, and simulations are 3
the three basic procedures that should be provided by group allocation programs. The 4
leave-one-out procedure should be used in reallocating purebred samples. S
The log-likelihood ratio allocation threshold should be user defined. Calculation 6
of membership P values for each genotype should be possible even when the alloca- 7
tion procedure is based on likelihood ratio values (i.e., not on low P value exclusion). 8
Membership P values are especially important when there are grounds to believe 9
that some members of the mixed sample may come from a ghost group. Group log- 10
likelihoods for each real genotype should be made available to the user rather than 11
just the allocation or nonallocation decision. Preferably, the user should be able to 12
choose missing allele frequency values either as constants or as the classical maybe- 13
next-allele formula. ig
16

17

Some Available Programs 18
19

Currently the three most widely used programs for group allocation based on pure- 20
bred genotype samples are GENECLASS?2 (Piry et al. 2004), WHICHRUN (Banks 21

and Eichert 2000) for codominant markers (microsatellites), and AFLPOP (Duch-
esne and Bernatchez 2001) for dominant markers (AFLP). These freely available pro-
grams can be downloaded at http://www.bio.ulaval.ca/louisbernatchez/links.htm.

Specifics of Hybrid Identification

Definition and General Principles

Hybrids may involve two distinct species, two strains, or two populations within a 32
single species. Genetic identification of either type of hybrids is technically the same 33
problem. However, intraspecific hybrids are typically more difficult to detect due to 34
less genetic differentiation and therefore require considerably more information (i.e., 35
more genotyped loci). Given two source breeds/species, a diagnostic allele (pres- 36
ence/absence) is one that has 100% frequency within one breed and 0% frequency in 37
the other breed/species. Historically, genetic identification of hybrids was associated 38
with the simultaneous presence of diagnostic alleles (presence/absence) of both 39
source breeds/species within a single genotype (Morizot et al. 1991). Indeed geno- 40
types with diagnostic alleles of mixed origin are easily observable and, without any cal- 41
culation, can be safely attributed to hybridization assuming no other breed/species 42
has contributed to the purported hybrid’s genotype. The 100% versus 0% frequency 43
diagnostic criterion has been somewhat relaxed in recent literature and loci with an 44
allele differing by >99% have sometimes been considered diagnostic (Young et al. 45
2002). However, there has been an increasing awareness that all loci showing a 46
frequency difference beyond sampling error could contribute to distinguish between S47
purebreds and hybrids (Bjornstad and Roed 2002). Even though loci with 10% N48

o



40045 Ch 08 087-108 1/31/07 8:30 PM Page 104 $

104  Aquaculture Genome Technologies

frequency differential, for example, have far less hybrid detection power than diag-
nostic loci, they can still be cumulated to attain any power level.

Hybrid Identification as Group Identification:
the Virtual-Hybrid-Group Method

~N OB W

co

Thus, hybrid identification is technically the same problem as group identification
10 except that preidentified samples of hybrids are usually not available as one of the
potential allocation groups. However, F1 hybrid allelic frequency distributions can be
directly computed from purebred frequencies, say f1 and f2. For codominant loci such
as microsatellites, a straightforward estimate of any hybrid allelic frequency fh is sim-
ply the average (f1 + 2)/2 of the two purebred frequencies. For dominant markers
(e.g., aflp), th =1 — sqrt(1 — f1)*sqrt (1 — £2). This means that purebred samples are
sufficient for allocation tasks including purebred and F1 hybrid groups. Again, sets of
nondiagnostic loci can be used successfully for hybrid detection. Following the same
idea, purebred samples also suffice to identify second-generation hybrids (F2 and
backcrosses).

O

Special Sampling Care

Although hybrid identification is technically the same as any other type of group allo-
cation, it requires special sampling care for two reasons. First, differentiation is
weaker between F1 hybrids and purebreds than between two distinct purebreds.
Second, since allelic frequencies are computed from the two purebred frequency esti-
mates, sampling errors in the latter will be passed along to the hybrid estimates.
Consequently, when hybridization is suspected, sample sizes should be increased
(>30), sampling performed as randomly as possible and alleles (or presence/absence
in case of AFLP) scored with extra precaution. Clearly, all of the above is even
more important when second generation hybrids are considered (Epifanio and
Phillipp 1997).

Efficiency and Accuracy in Hybrid Identification

There are two ways to look at the performance of a hybrid identification procedure.
One important measure is the probability that, given a specimen classified as hybrid,
this specimen is in fact a hybrid. Another important measure is the probability that,
given a true hybrid, it was classified (allocated) as a hybrid. Following Vahé and Prim-
mer (2006), we use the words accuracy and efficiency to denote the first and second of
these two measures, respectively. The product of these two measures can be seen as
the overall performance of the hybrid identification procedure.

46 If the likelihood distributions for purebreds and hybrids are not (nearly)
478 perfectly disjoint, then there is an unavoidable tradeoff between accuracy and
48N

o



40045 Ch 08 087-108 1/31/07 8:30 PM Page 105 $

Individual-based Genotype Methods in Aquaculture 105

Low accuracy and high efficiency hybrid id ;
number of | specimens | among 3
allocated to POpA popB popA X popB ;1
POpA 38 0 0 g
popB 0 35 0 'c') 8
popA X popB 12 19 50 D
None 0 0 0 T
H
R
High accuracy and low efficiency hybrid id g
number of | specimens | among H
allocated to popA popB popA X popB <L)
popA 35 0 0 D
popB 0 38 0
popA X popB 0 0 11
None 15 12 39 v

Figure 8.8. The accuracy versus efficiency tradeoff in hybrid identification. One way to strike
the desired balance between accuracy and efficiency is to fix the log-likelihood allocation
threshold by running allocation simulations. Raising the LOD threshold generally decreases
efficiency while increasing accuracy.

efficiency (Figure 8.8). Some users will prefer to make sure that any possible hybrid
be identified (i.e., to raise the efficiency component). For instance, when there exists
independent data bearing on intermediate morphological traits, uncertain hybrid
genetic classification may be used in a cross-validation fashion. On the other hand, in
the absence of any control data and especially when there is only a suspicion that
hybrid specimens might exist, it is preferable to obtain highly confident hybrid detec-
tion (i.e., enhance the accuracy component of performance). One way to strike the
desired balance between accuracy and efficiency is to fix the log-likelihood allocation
threshold by running allocation simulations. For instance, raising the threshold suffi-
ciently will virtually eliminate false hybrid classification (i.e., accuracy will become
close to 100%). Of course, this will be at the expense of a higher rate of nonallocations

of both purebreds and hybrids.
So far, we have discussed hybrid identification based on purebred samples. How-
ever, as with general group allocation procedure, there exist clustering methods for S47
N48
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1 hybrid identification. Two such methods have been implemented in STRUCTURE
2 (Pritchard et al. 2000) and NEWHYBRIDS (Anderson and Thompson 2002) and
3 have been recently assessed by Vh and Primmer (2006). It was found that both pro-
4 grams, unless run with very large numbers (n = 48) of codominant loci, showed high
5 rates of misclassification of purebred as F1 hybrids even with moderately high Fst
6 (0.12). Also backcrosses were often misclassified as purebred. Briefly, there are accu-
7 racy and efficiency problems with currently available programs performing hybrid
8 allocation without baseline samples. Unfortunately, these methods do not provide
9 any inbuilt mechanism, such as simulation tools, to assess the accuracy and efficiency
10 levels associated with the user’s own specific data. Therefore, it is usually much safer
11 in hybrid studies to rely on good quality samples of purebred groups.

12

13

ig’ Markers

16
In principle, any type of marker (RFLP, RAPD, AFLP, microsatellite, SNP) can be

used for performing hybrid identification. However, correct detection of hybrids
takes more genetic information and so, roughly speaking, more loci than allocation of
purebred specimens. This is especially true when purebred individuals belong to dis-
tinct, but weakly differentiated, strains. Detection of intraspecific hybrids necessitates
large numbers of loci and so AFLP markers should be considered until SNP markers
can be obtained in large numbers and analyzed at low cost in nonmodel species.

Available Programs

The virtual-hybrid-group method based on purebred samples has been implemented
in AFLPOP (Duchesne and Bernatchez 2002) for dominant markers (AFLP).
NEWHYBRIDS (Anderson and Thompson 2002) and STRUCTURE (Pritchard
et al. 2000) are additional software that provides posterior distribution that individu-
als fall into different hybrid categories between populations using dominant or
codominant markers. These programs can be downloaded at http://www.bio.ulaval.ca/
louisbernatchez/links.htm.

36

37

38 Conclusion

39

40 The current context in the applications of molecular genetic techniques, particularly
41 as pertaining to individual-based genotype analyses, is extremely positive. There is a
42 wealth of powerful genetic markers that are being developed for an increasing num-
43 ber of cultured species, both vertebrates and invertebrates, and many efficient analyt-
44 ical tools are readily accessible, free of charge for the most part. It is our hope that we
45 have provided a better understanding of the principles underlying some of the most
46 versatile methods currently available for performing parentage, strain/population
478 assignment, and hybrid analyses, as well as useful guidelines for choosing proper effi-
48N cient analytical software.
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