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ABSTRACT

Evolutionary genomics has benefited from methods that allow identifying evolutionarily important
genomic regions on a genomewide scale, including genome scans and QTL mapping. Recently, genomewide
scanning by means of microarrays has permitted assessing gene transcription differences among species or
populations. However, the identification of differentially transcribed genes does not in itself suffice to
measure the role of selection in driving evolutionary changes in gene transcription. Here, we propose and
apply a ‘‘transcriptome scan’’ approach to investigating the role of selection in shaping differential profiles of
gene transcription among populations. We compared the genomewide transcription levels between two
Atlantic salmon subpopulations that have been diverging for only six generations. Following assessment of
normality and unimodality on a gene-per-gene basis, the additive genetic basis of gene transcription was
estimated using the animal model. Gene transcription h2 estimates were significant for 1044 (16%) of all
detected cDNA clones. In an approach analogous to that of genome scans, we used the distribution of the QST

values estimated from intra- and intersubpopulation additive genetic components of the transcription
profiles to identify 16 outlier genes (average QST estimate¼ 0.11) whose transcription levels are likely to have
evolved under the influence of directional selection within six generations only. Overall, this study
contributes both empirically and methodologically to the quantitative genetic exploration of gene
transcription data.

ACCORDING to the theory of adaptive radiation,
colonization of new environments may promote

rapid population divergence as a by-product of local
adaptation to differential selective regimes (Schluter

2000). Elucidating the genetic changes underlying
phenotypic evolution resulting from this process is a
central objective of evolutionary biology. Reaching this
goal has recently greatly benefited from the develop-
ment of various experimental strategies, including ge-
nome scans, QTL analysis, and gene expression QTL
(eQTL) mapping (Vasemagi and Primmer 2005). Ge-
nomewide scanning for gene transcription differences
among species or populations using microarrays is in-
creasinglybeingperformedonawiderangeoforganisms
(e.g., Jin et al. 2001; Brem et al. 2002; Oleksiak et al. 2002;
Bochdanovits et al. 2003; Townsend et al. 2003;
Derome et al. 2006; Giger et al. 2006; Roberge et al.
2006). However, the identification of genes showing
significant differences in transcription levels among
groups does not in itself suffice to conclude that such
changes were driven by divergent selection, even when
environmental conditions were controlled. Thus, the

role of selection in shaping patterns of gene transcrip-
tion is still contentious. For instance, Khaitovich et al.
(2005) suggested that most interspecific differences in
transcript levels evolve neutrally, whereas others argued
that strong stabilizing selection dominates the evolution
of transcriptional change (Denver et al. 2005; Rifkin

et al. 2005). Theory predicts that both the magnitude and
the speed of phenotypic change (including change in
gene transcription level) inresponse to selection depend
on heritability of a trait (Falconer and Mackay 1996).
Yet, only a handful of studies have formally determined
the heritability estimates (h2) of gene transcription
(reviewed in Stamatoyannopoulos 2004; Gibson and
Weir 2005).

Because transcription profiles can be considered as
reflecting variation at both phenotypic and genomic
levels (Whitehead and Crawford 2006), the synergy
of methods that can detect the role of selection in
shaping differences among populations at the pheno-
typic and genetic levels may represent an efficient
means of investigating evolutionary changes in gene
transcription profiles. On the one hand, comparing the
extent of quantitative genetic differences of phenotypic
traits among populations (QST) (Spitze 1993) with that
observed at neutral marker loci (FST) has been widely
used to assess the relative contributions of selection and
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drift to phenotypic divergence among populations
(Merila and Crnokrak 2001; Koskinen et al. 2003).
QST is defined as:

s2
GB=ðs2

GB 1 2s2
GWÞ; ð1Þ

where s2
GB and s2

GW represent the among- and average
within-population components of the genetic variance
for quantitative traits, respectively. There is no theoret-
ical constraint for applying the QST framework to gene
transcription profiles (Gibson and Weir 2005). Yet, this
has never been done to our knowledge. On the other
hand, genome scans, which consist in analyzing many
(several hundreds to several thousands) molecular
markers to reveal patterns of genetic differentiation at
the genome scale, have become a popular means for
identifying genes evolving under the effect of selection
between populations. The underlying principle of this
approach is that gene flow will affect all loci across the
genome, whereas selection will act locally on specific
genes (Luikart et al. 2003). As a result, only a few loci
will display an atypical pattern of variation caused by the
influence of locus-specific forces (Storz 2005). It is then
possible to reveal these ‘‘outlier’’ loci by comparison with
the rest of the genome. Namely, outlier genes showing
the highest levels of differentiation between populations
will represent those that are most likely to evolve under
directional selection whereas those with the lowest level
of differentiation are more likely to be under the effect
of stabilizing selection (Beaumont 2005).

In this study, we propose and apply a ‘‘transcriptome
scan’’ approach combining both the QST and genome
scan frameworks to investigate the role of selection in
shaping differential profiles of gene transcription be-
tween populations. Recently diverging (six generations)
subpopulations of Atlantic salmon (Salmo salar), which,
respectively, reproduce in an upstream and downstream
stretch of the Sainte-Marguerite River, Canada, were
used as a model system. More precisely, a 16,006-gene
cDNA microarray was used for comparing the genome-
wide gene transcription data of the progeny from
several half-sib families from these two subpopulations
reared in a controlled environment. Using a quantita-
tive genetic approach based on the animal model
(Kruuk 2004), we estimated both gene transcription
heritability and QST for each gene represented and
detected on the microarray. We then performed a
‘‘transcriptome scan’’ by which the distribution of indi-
vidual QST estimates for all genes with a significant tran-
scription profile h2 was obtained and genes in the upper
tail of the distribution identified as potentially under
directional selection. Genes with high-transcription pro-
file QST estimates might not be genetically linked to the
causal genetic sequence differences. Nevertheless, high-
transcription QST estimates are expected to pinpoint
the most likely genes for which transcription profiles
evolved as a result of selection and thus provide valuable

information on the actual functions that have been
targeted by selection.

MATERIALS AND METHODS

Habitat characteristics, sampling, and crossing design: The
Sainte-Marguerite River (48�209 N, 70�009 W) is located 250 km
northeast of Quebec City, Canada, and is subdivided into
two main branches. The northeast branch is 85 km long, but
access to salmon is limited to the lower 35 km by waterfalls and
was limited to the lower 6.5 km until a fish ladder was installed
at the level of a waterfall in 1981. In 1997, highly significant
genetic differentiation at microsatellite loci (FST ¼ 0.028 and
0.036 (two upstream sites), P , 0.0006) was revealed between
salmon subpopulations from downstream and upstream of the
fish ladder (Garant et al. 2000), indicating partial reproduc-
tive isolation between them. Moreover, Aubin-Horth et al.
(2006) also reported a significantly higher proportion of
precocious male parr (early maturing males) and a smaller
size threshold for male parr to mature upstream rather than
downstream from the fish ladder. Environmental conditions
also differ between river sections. The downstream stretch is
surrounded by bare and unstable clay cliffs. Heavy rainfall
leaches the clay from these cliffs into the river, resulting in
different water coloration and chemistry relative to the upper
reaches (Centre Inter-universitaire de Recherche sur le
Saumon Atlantique, unpublished data). Overall, evidence
for restricted gene flow as well as differences in habitat
characteristics and life histories suggest that upstream and
downstream salmon subpopulations may be in the course of
becoming genetically adapted to their respective environ-
ments. Eight male and two female adult salmon from each of
the upstream and downstream populations were captured in
the summer of 2003 and 2004, and factorial crosses within
subpopulations were made at the provincial fish hatchery in
Tadoussac (15 km from the Sainte-Marguerite River) during
the fall of those years. Crosses should have yielded a total of 64
half-sib families, but two families were lost in the first year and
seven in the second, for a total of 55 families. Fertilized eggs
were incubated in controlled conditions (identical for all
families) and alevins (immature fish still living on food
reserves of their yolk sacs; here resources from the yolk sacs
were completely or almost completely depleted) were sampled
at the yolk-sac resorption stage. Four individuals from each
family were collected and immediately frozen in liquid
nitrogen.

RNA extraction, labeling, and cDNA hybridization: Whole
frozen alevins were homogenized individually in 1 ml TRIZOL
@Reagent (Invitrogen, San Diego) using a Diax 100 homoge-
nizer (Heidolph Instruments), and total RNA was extracted as
previously described (Roberge et al. 2006). Briefly, 200 ml chlo-
roform (Sigma, St. Louis) was added to each ml of fish homo-
genate in Trizol. After mixing and centrifuging (12,000 3 g, 0�,
15 min), the aqueous layers were transferred into new tubes
where 1 ml isopropanol (Sigma) was added. Samples were then
stored overnight at �80�. On the following day, they were
centrifuged for 1 hr (12,000 3 g, 0�) and the isopropanol was
discarded. The pellets were washed with 1 ml 70% ethanol,
dried for 15 min at room temperature, resuspended in 40 ml
non-DEPC and treated nuclease-free water (Ambion), and
spiked with 1 ml RNAse inhibitor (Ambion). For each sample,
15 mg of the pooled RNA from the four separate extractions
was retro-transcribed and labeled using a Genisphere 3DNA
array 50 kit, Invitrogen’s Superscript II retro-transcriptase,
and Cy3 and Alexa 647 dyes (Genisphere). The detailed pro-
tocol of the retro-transcription, labeling, and hybridization
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procedures can be found at http://web.uvic.ca/cbr/grasp/
(Genisphere Array 50 Protocol). Briefly, 15 mg total RNA
was reverse transcribed using special oligo(dT) primers with
59 unique sequence overhangs for the labeling reactions. Mi-
croarrays were prepared for hybridization by washing twice for
5 min in 0.1% SDS, five times for 1 min in MilliQ H2O,
immersing 3 min in 95� MilliQ H2O, and drying by centrifu-
gation (5 min at 800 3 g in 50-ml conical tubes). The cDNA was
hybridized to the microarrays in a formamide-based buffer
(25% formamide, 43 SSC, 0.5% SDS, 23 Denhardt’s solution)
with competitor DNA ½LNA dT bloker, (Genisphere), human
COT-1 DNA (Sigma)� for 16 hr at 51� in a humidified
hybridization oven. The arrays were washed once for 5 min at
45� (23 SSC, 0.1% SDS), twice for 3 min in 23 SSC, 0.1% SDS
at room temperature (RT), twice for 3 min in 13 SSC at RT,
twice again for 3 min in 0.13 SSC at RT, and finally dried by
centrifugation. The Cy3 and Alexa 647 fluorescent dye
attached to DNA dendrimer probes (3DNA capture reagent,
Genisphere) were then hybridized to the bound cDNA on the
microarray, using the same hybridization solution as earlier:
the 3DNA capture reagents bound to their complementary
cDNA capture sequences on the oligo(dT) primers. This
second hybridization was carried out over 2 hr at 51� in a
humidified hybridization oven. The arrays were then washed
and dried as mentioned before.

The design for the experimental microarray hybridizations
differed for each of the 2 years. In 2003, we were interested
mainly in assessing the functional genomic basis of sexual
precocity (C. Roberge, H. Guderley and L. Bernatchez,
unpublished data), such that the progeny of one anadromous
male and one precocious parr from the same subpopulation
and sharing the same mother were always coupled on the same
microarray, for a total of 24 microarrays and 48 offspring
analyzed. For 2004, one offspring each from the upstream and
downstream subpopulation was always coupled on the same
microarray, for a total of 21 microarrays and 42 offspring
analyzed. Thus, transcription profiles could be obtained for a
total of 90 offspring representing 50 half-sib families.

Signal detection, data preparation, and ANOVA: Hybrid-
ization signals were detected using a ScanArray scanner
(Packard BioScience). Spots were located and quantified with
the QuantArray 3.0 software, using the histogram quantifica-
tion method and keeping the mean value of intensity for each
spot. Local background and the data from bad spots were
removed. Missing data were then imputed using the K-nearest
neighbors imputer in SAM (Tusher et al. 2001) (15 neigh-
bors). Data were normalized by dividing by the channel mean.
Genes with mean intensity smaller than the mean intensity of
control empty spots plus twice its standard deviation in both
channels were discarded, leaving data from a total of 6484
detected clones to be analyzed. Prepared data were corrected
for intensity-linked distortion using a regional LOWESS
algorithm in the R/MAANOVA package (http://www.jax.
org/staff/churchill/labsite/software/Rmaanova). The signif-
icance of the observed differences in transcription level
between subpopulations was assessed using the R/MAANOVA
package (Kerr et al. 2000, 2002). The ANOVA model included
the ‘‘site’’ (above or below the ladder), ‘‘sire type’’ (anadro-
mous or precocious), and ‘‘year’’ and ‘‘dye’’ terms as fixed
terms. A permutation-based F-test (FS, with 1000 sample ID
permutations) was then performed, and restricted maximum
likelihood was used to solve the mixed-model equations. Best
linear unbiased estimates of the ‘‘dye’’ effect were subtracted
from the normalized data for each gene and dye; the obtained
data were used to assess normality before to be fitted into an
animal model for heritability and QST estimation (see below).

Normality and uni/multimodality assessment: Normality
is generally assumed in microarray data but rarely verified

because of the small sample sizes typical in such experiments
(Draghici 2003). Here, we used an R script to obtain, for each
of the 6484 detected cDNA clones, Pearson’s correlation test
P-values and R2 between the observed Q-Q plot of the 90 gene
transcription data points and that expected for a normal
distribution, using the R program (version 2.3.0). A similar
strategy was used by Giles and Kipling (2003) as an alternative
to the Shapiro–Wilk normality test, which they considered
overstringent (in the sense that, even with a small sample size, it
has sufficient power to detect as significant very slight
departures from normality). We also performed the Shapiro–
Wilk normality test on the gene transcription data of each
detected cDNA clone in R. Unimodality of gene transcription
data was tested for each of the 6484 detected cDNA clones
using an R script and the Diptest package (version 0.25-1). The
Diptest package (Maecher and Ringach 2004) computes
Hartigan’s dip statistic for an empirical distribution, which is
the maximum difference between this empirical distribution
function and the unimodal distribution function that mini-
mizes that maximum difference; this is consistent for testing
any unimodal against any multimodal distribution (Hartigan

and Hartigan 1985). Interpolating from the table of quan-
tiles from a large simulation for Hartigan’s dip test (qDiptab)
in the Diptest package for R, we found that a dip statistic of
0.054 corresponds to a tail probalility of 5% (for n ¼ 90).
Hence, we interpreted transcription profiles of genes with
dip . 0.054 (P , 0.05) as showing significant departure from
unimodality.

Heritability and QST estimation: Components of the genetic
variance in the gene transcription level for each detected gene
were estimated from an animal model (Kruuk 2004) using the
Parameter Estimation Software 3.0 (PEST; Groeneveld et al.
1990) and Variance Component Estimator 5.1 (VCE; Kovac

et al. 2002) programs. PEST was used for recoding phenotypic
and pedigree information into a form usable by VCE (Perry

et al. 2005). VCE was then used to estimate genetic and phe-
notypic variance within and between subpopulations using
restricted maximum likelihood to solve a linear model of the
form:

y ¼ X b 1 Z1a 1 Z2b 1 Z3m 1 Z4t 1 e; ð2Þ

where y is a vector of the transcription levels for a given gene
(n ¼ 90 individuals), X is the design matrix relating the ap-
propriate fixed effect (b) to each individual, Z1 refers to design
matrices relating the appropriate random genetic effects (a,
vector of the additive genetic effect; b, vector of subpopulation
effect; m, vector of maternal effect; t, vector of sampling year
effect) to each individual, and e is the error term. A Perl script
was used to run the programs sequentially and collect the
information for all genes into a single output file (available
upon request). Heritability estimates and their standard errors
were collected directly from VCE output files, whereas QST

values were estimated from Equation 1, using the animal
genetic variance in gene transcription to represent s2

GW and
the variance from the parental subpopulation (upstream or
downstream) as s2

GB. Significance of heritability and s2
GB

estimates for each gene was assessed by performing the analysis
on 500 random permutations of the data, generating neutral
distributions for these two quantities. Significance of s2

GB

estimates was used to evaluate the significance of QST for genes
with significant heritability estimates. Indeed, permutation
tests on QST were much less accurate, generating hundreds of
false positives with nonsignificant s2

GB and/or s2
GW but very

high and significant QST estimates.
Functional classification: Functional classification and as-

sessment of significant differential representation of functional
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classes between subgroups of cDNA clones and all clones
analyzed were performed in the DAVID/EASE environment
(http://david.niaid.nih.gov/david/). The DAVID 2.1 (beta
version) gene accession conversion tool was first used to
convert gene ontology-linked identifications of various types
gathered in the GRASP 16,006-gene microarray gene identifi-
cation file to UNIGEN clusters. Assessment of significant
differential representation of functional classes between sub-
groups of cDNA clones representing genes with significant
transcription profile heritability or genes showing significant
differences between subpopulations and the group of all
analyzed cDNA clones was performed with EASE 2.0.

Transcriptome scan and neutrality test: The ‘‘transcriptome
scan’’ was performed by obtaining the distribution of in-
dividual transcription-level QST values for all detected cDNA
clones corresponding to genes with significant transcriptional
heritability and by identifying those in the upper (1.5%) tail of
the distribution as those for which transcription was poten-
tially under directional selection. Additionally, we performed
Lande’s neutrality test (Lande 1976, 1977; Koskinen et al.
2003) on gene transcription data for all detected genes with
significant transcriptional heritability. The null hypothesis of
evolution by random drift was tested as follows: F ¼ (Ne s2

GB)/
(h2 s2

GW t). The numerator and denominator degrees of
freedom are the number of populations compared �1 and
‘, respectively. Ne was estimated from previously published
microsatellite data (Garant et al. 2000) using the NeEstimator
software and the linkage disequilibrium method (Peel et al.
2004).

For both the QST scan and neutrality test, we obtained
more realistic results when considering only genes with sig-
nificant heritability estimates. This criterion makes sense from
a theoretical point of view since genes with nonsignificant
transcriptional h2 or intrapopulational genetic variance of
transcription levels are not theoretically expected to respond
rapidly to selection and evolve different expression levels (in a
few generations only). We considered the complete exhaus-
tion of genetic variance for gene expression by selection
unlikely in six generations. Some genes with nonsignificant
transcriptional h2 may have high transcriptional QST estimates
as a result of leftover environmental variance (although this
would come mainly from environmental maternal effects; we
included a term for maternal effects in the animal model we
used); however, we were interested here mainly in identifying
genes that transcription evolved as a result of directional
selection. Perhaps even more importantly, using only genes
with significant transcriptional h2 allowed us to correct for
artifacts resulting from very small s2

GW estimates. Hence, both
the QSTand Lande’s neutrality test equations contain a h2 and/
or s2

GW term in their denominator. As shown in Figure 2, h2

estimates (and hence s2
GW) are virtually null for a majority of

the 6484 detected genes. For QST, considering the genes with
nearly null transcriptional heritability artifactually generates
very high estimates, even in cases where s2

GW is not significant.
For Lande’s test, this generates F-statistics several orders of
magnitude above the threshold F-value for significance for a
majority of the detected genes where there should in fact be an
indeterminate form (F ¼ (Ne 3 s2

GW)/0). Finally, there is an
increasing number of reports about the predominance of
nonadditive interactions at the transcriptome levels (Gibson

et al. 2004; Auger et al. 2005; Roberge et al. 2008). Estima-
tion of QST for genes under nonadditive control would not be
valid since the QST framework is based on the premise of
additivity. Such genes are also more likely to have low or
nonsignificant heritability values. Hence, preselecting genes
with significant transcriptional h2 minimized the impacts of
several problems and possible artifacts on our results and
interpretations.

RESULTS

Hybridization design: The design for the experimental
microarray hybridization differed for the two sampling
years. In 2003, we were interested mainly in assessing
the functional genomic basis of sexual precocity (C.
Roberge, H. Guderley and L. Bernatchez, unpub-
lished data), such that the progeny of one anadromous
male and one precocious parr from the same subpop-
ulation and sharing the same mother were always coupled
on a same microarray, for a total of 24 microarrays and
48 offspring analyzed. For 2004, one offspring from
each the upstream and downstream subpopulations was
always coupled on the same microarray, for a total of 21
microarrays and 42 offspring analyzed. Thus, transcrip-
tion profiles were obtained for a total of 90 offspring
representing 50 half-sib families.

Normality and uni/multimodality assessment: Pear-
son’s correlation tests between normalized gene tran-
scription data and a normal distribution revealed a highly
significant correlation to a normal distribution for all de-
tected genes (the highest observed P-value being 1.57 3

10�8), with Pearson’s determination coefficient generally
very close to one (average 0.97; Figure 1). Results from the
Shapiro–Wilk test were less categorical: 10% of the genes
showed a significant departure from normality, even when
using a Bonferroni-corrected significance threshold of
7.7 3 10�6. The distributions of the transcription profiles
for the three genes that showed the most significant depar-
tures from normality according to the Shapiro–Wilk test
all included outlier data points (supplemental Figure S1 at
http://www.genetics.org/supplemental/), suggesting that
the apparent departure from normality was the result of
the test’s high sensitivity to the presence of outliers. Figure
1A shows the relationship between the log of the P-value
from the Shapiro–Wilk test and Pearson’s determination
coefficients for all detected genes. While normality does
not have to be assumed for performing the permutation-
based ANOVA, it is assumed in the procedure that we used
for assessing genetic parameters. However, restricted
maximum-likelihood estimators are robust to deviations
from the assumption of normality (Kruuk 2004), and
therefore we believe that the observed departure from
normality for a minority of genes (in the Shapiro–Wilk
test only) should not significantly impact on our main
conclusions. The distribution of the dip statistic from
Hartigan’s dip test for the 6484 detected genes is pre-
sented in Figure 1B. While the transcripts from the right
tail of the distribution in Figure 1B show expression pat-
terns across all samples that suggest multimodality (four
examples are presented in Figure 1C), only 175 tran-
scripts (including those presented in Figure 1C) showed
statistical evidence of multimodality (P , 0.05, dip .

0.054), while 324 (0.05 3 6484) could have been expected
by chance alone. Thus, there was no strong evidence for
the occurrence of bi- or multimodality of transcription
profiles in our data set.
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Heritability estimates, QST estimation, and transcrip-
tome scan: Figure 2 presents the distribution of herita-
bility estimates of the normalized transcription profiles
for the genes corresponding to the 6484 cDNA clones
analyzed and their associated standard error. Significant
(P # 0.05) transcriptional h2 estimates were obtained for
1044 genes (16% of all detected genes). Transcriptional
h2 estimates for these varied between 0.121 and 0.996
and averaged 0.409. A test conducted in EASE 2.0 re-
vealed significant overrepresentation of genes in several
gene ontology (GO) categories (9 categories with an
EASE score ,1 3 10�3) within the genes with significant
transcriptional h2 when compared to all genes on the
microarray. Most of these categories were related to oxi-
dative phosphorylation, including, for instance, primary
active transporter activity (GO molecular function, EASE

score ¼ 1.6 3 10�4) and hydrogen ion transporter ac-
tivity (GO molecular function, EASE score¼ 7.3 3 10�4).

Transcriptional QST were estimated only for the 1044
cDNA clones corresponding to genes with significant
transcriptional h2 for reasons explained previously. Most
of those genes had low transcriptional QSTestimates that
are unlikely to differ from 0 (Figure 3). The 1.5% upper
outliers (16 cDNA clones) of this distribution (Table 1)
are genes for which transcription levels are the most
likely to have diverged between the two subpopulations
as a result of directional selection. Transcriptional QST

estimates for these outliers ranged from 0.07 (tartrate-
resistant acid phosphatase type 5) to 0.19 (‘‘unknown’’
gene) and averaged 0.11. The identity of 10 of these
outliers was unknown, meaning that they did not
generate any BLAST hits with e-values ,1 3 10�15 and

Figure 1.—Assessment of normality and
unimodality. (A) Relationship between Pear-
son’s determination coefficient between a nor-
mal distribution and the observed distribution
of normalized gene transcription data, on the
one hand, and the inverse of the log of the
P-value from the Shapiro–Wilk normality test
of gene transcription data, on the other hand,
for each of the 6484 cDNA clones correspond-
ing to genes for which expression was de-
tected. The horizontal line indicates the
position of the Bonferroni-corrected signifi-
cance threshold for the Shapiro–Wilk test.
(B) Density curve of Hartigan’s dip statistic
testing for unimodality of the gene transcrip-
tion data for all detected genes. Gene tran-
scription data from genes at the right of the
vertical line (dip . 0.054, P , 0.05) show sig-
nificant departure from unimodality. (C) Den-
sity curves of the normalized gene
transcription data of the 90 sampled individu-
als for the four genes with the highest dip sta-
tistic. The corresponding gene products are
(i) an unknown gene product (GenBank ac-
cession number of the cDNA sequence:
CA059553), (ii) ribosomal protein L35, (iii)
ubiquitin, and (iv) a-actin 2.
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an informative name (for a detailed description of the
array annotation process, see http://web.uvic.ca/cbr/
grasp). The remaining six outlier cDNA clones repre-
sented genes with various functions (Table 1). No func-
tional group appeared significantly overrepresented
within these genes when compared to all genes repre-
sented on the microarray. It is noteworthy that all of
these outliers were overtranscribed in the upstream sub-
population (average ¼ 29% overexpression relative to
the downstream subpopulation). The overtranscription
ranged from 16% (unknown gene CB513854) to 46%

(nucleolar RNA helicase II). Gene transcription h2

among these genes ranged from 0.14 (transmembrane
protein 14C) to 0.44 (pterin-4-a-carbinolamine dehydra-
tase) and averaged 0.28. The interpopulation compo-
nent of additive genetic variance (s2

GB) was significant
for all 16 outliers (P , 0.05). We used significance of the
s2

GB estimates to test for significance of QST estimates
since the permutation test on QSTestimates was prone to
false positives (see materials and methods).

Lande’s test, which we also performed on all cDNA
clones corresponding to the 1044 genes with significant
transcriptional h2, provided evidence of non-neutral
evolution for the gene transcription levels of 24 of these
genes only, which nevertheless included 15 of the 16
genes identified by the QST scan (Table 1). The 9 re-
maining genes were also all overtranscribed in the up-
stream subpopulation. Five of these had no known
function, while the remaining 4 were a salmonid toxin-
like gene (toxin-1, CB493361), P0-like glycoprotein, myc-
associated factor X, and glutamyl-prolyl-tRNA synthetase.

ANOVA results on gene expression divergence
between subpopulations: In parallel to our quantitative
genetic approach, we also tested the significance of gene
transcription differences between subpopulations in a
simpler linear model where the pedigree information
was not considered, as usually done in other studies. The
simulation-based ANOVA revealed highly significant
(P , 0.0001) differences in gene transcription between
the progeny of fish from the two subpopulations for
12 cDNA clones (Table 2). The magnitude of the

Figure 2.—Gene transcription heritability. (A) Distribu-
tion of heritability estimates of the normalized transcription
profiles for the 6484 cDNA clones corresponding to genes
for which expression was detected. (B) Relationship between
h2 and its standard error for each of the 6484 detected cDNA
clones.

Figure 3.—Gene transcription QST. Distribution of QST

estimates of the normalized transcription profiles of the
1044 cDNA clones representing genes with significant gene
transcription heritability (P # 0.05)
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observed significant changes varied between a 30%
undertranscription (thioredoxin-like protein p19-coding
gene) to a 66% overtranscription (creatine kinase-
coding gene) in the upstream subpopulation (average
fold difference of 33%). Genes that differed significantly
in expression between the two subpopulations were
involved in several molecular and biological functions,
including energy metabolism and transcription (Table
2). Moreover, a test conducted in EASE 2.0 revealed a
highly significant (EASE score ¼ 8.14 3 10�3) over-
representation of genes of the immune response gene
ontology category (biological process) among the genes
significantly differentially transcribed at P , 0.005 when
compared to all genes represented on the microarray.
Notably, four different clones representing major histo-
compatibility class II-associated invariant chains showed
consistent undertranscription (average 17%) in the prog-
eny of the upstream subpopulation. A nuclease-sensitive
element-binding protein 1 (Y-box-binding protein 1)
coding gene was also significantly undertranscribed in
the upstream subpopulation. It is noteworthy that this

gene was originally identified as coding for a DNA-
binding protein that regulates major histocompatibility
complex (MHC) class II genes (Didier et al. 1988).

DISCUSSION

Here, we applied a ‘‘transcriptome scan’’ approach
combining both the QST and genome scan frameworks
to investigate the role of selection in shaping differen-
tial profiles of gene transcription between recently
diverging (six generations) subpopulations of Atlantic
salmon. The additive genetic basis of gene transcription
was estimated for genes corresponding to all detected
cDNA clones (6484) and gene transcription heritability
estimates were significant for 1044 (16%) of these. The
scan of QST values estimated from intra- and interpop-
ulation additive genetic components of the transcrip-
tion profiles identified 16 outlier cDNA clones (average
QST estimate ¼ 0.11) representing the most likely genes
for which transcription levels have evolved under the

TABLE 1

Results from the transcriptome scan

Gene product

GenBank
accession

no. h2 QST

P-value
h2

P-value
s2

GB

Fold
difference

F neutrality
test Functional information

Transmembrane
protein 14C

CA042090 0.14 0.11 3.8 3 10�2 1.0 3 10�2 1.21 18.94* Unknown function

Selenoprotein
P, 1b

CB509685 0.21 0.11 4.8 3 10�2 8.0 3 10�3 1.31 12.28* Oxidant defense, thyroid
hormone metabolism,
defense against viral
infections

Nucleolar RNA
helicase II

CB505664 0.32 0.08 2.0 3 10�2 0 1.46 6.03* Ribosomal RNA processing,
transcription regulation

Pterin-4-a-
carbinolamine
dehydratase

CB497855 0.44 0.07 8.0 3 10�3 2.0 3 10�3 1.19 3.80
(NS)

Tetrahydrobiopterin recycling
and biosynthesis, HNF-1-a
regulation

Lysozyme type II CA037907 0.28 0.07 2.6 3 10�2 1.8 3 10�2 1.29 5.76* Bacteriolytic function
Tartrate-resistant

acid phosphatase
type 5

CA045149 0.37 0.07 1.2 3 10�2 2.0 3 10�3 1.39 4.22* Cytochemical marker of
macrophages, osteoclasts,
and dendritic cells; unknown
biological function

Unknown CB496434 0.22 0.19 3.8 3 10�2 0 1.40 22.40*
Unknown CA060749 0.23 0.16 5.0 3 10�2 0 1.31 17.34*
Unknown CB514770 0.38 0.14 1.0 3 10�2 0 1.18 9.30*
Unknown CB514561 0.27 0.13 2.4 3 10�2 0 1.25 12.39*
Unknown CB513854 0.20 0.13 2.6 3 10�2 6.0 3 10�3 1.16 16.42*
Unknown CA060904 0.21 0.13 4.6 3 10�2 6.0 3 10�3 1.26 15.59*
Unknown CB517440 0.44 0.11 1.8 3 10�2 0 1.35 6.13*
Unknown CA056630 0.23 0.11 3.2 3 10�2 4.0 3 10�3 1.30 11.03*
Unknown CA041889 0.31 0.07 3.2 3 10�2 1.6 3 10�2 1.25 5.18*
Unknown CA056760 0.23 0.10 3.8 3 10�2 6.0 3 10�3 1.37 9.88*

cDNA clones corresponding to the 16 genes for which transcription-level QST estimates were in the upper 1.5% of the QST dis-
tribution for 1044 cDNA clones representing genes with significant transcription-level heritability. Corresponding QST and her-
itability estimates (with their P-values from the permutation test), F-statistic from Lande’s neutrality test (asterisks indicate
significance at the P , 0.05 threshold), fold difference between subpopulations (upstream/downstream), GenBank accession
number, and functional information from the literature are presented.
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influence of directional selection within only approxi-
mately six generations. Additional evidence of non-
neutral evolution of the transcription levels for 15 of
those 16 genes was obtained by performing Lande’s
neutrality test on gene transcription data. Overall, this
study shows that the transcriptome scan approach can
be used for identifying genes of which the transcription
profiles are likely to have evolved as a result of direc-
tional selection, even at small temporal and spatial scales.

Gene transcription normality and multimodality:
When assessing the genetic parameters of gene tran-
scription profiles taken as phenotypic traits, the ques-
tion of the normality of the data becomes more than a
mere ‘‘to-use-or-not-to-use-parametric-statistics’’ concern:
it may reflect either the qualitative or the quantitative
nature of the traits. Hence, Gibson and Weir (2005)
noted that, in expression QTL mapping studies, eQTL
accounting for 25–50% of transcriptional variation pre-
vails. They suggested that since major-effect eQTL are
common, gene transcription data should often depart
from a normal distribution and exhibit bi- or multi-
modal distributions, which would make the genetic
structure of gene transcription profiles more akin to
qualitative than to quantitative phenotypic traits. Yet,
very few studies have tested the normality of gene
transcription data on a gene-per-gene basis (but see
Giles and Kipling 2003) and, to our knowledge, none
have examined the modality of such data. Here, we
observed strong and highly significant correlations
between gene transcription data and the normal distri-

bution and that for all detected genes (cDNA clones
with low-intensity signal were filtered prior to this
analysis). However, results from the Shapiro–Wilk test
suggest that the transcription data of 10% of the
detected genes departed significantly from normality.
The Shapiro–Wilk test appears very sensitive to outliers
(supplemental Figure S1 at http://www.genetics.org/
supplemental/), which might increase the number of
false positives. Moreover, Giles and Kipling (2003)
argued that, even with small sample sizes, the Shapiro–
Wilk normality test has the power to detect very slight
departures from normality and score them as signifi-
cant. We also tested the evidence of uni- vs. bi- or multi-
modality in the gene transcription data distributions of
each of the 6484 detected cDNA clones. We found little
evidence for bi- or multimodality since only 175 clones
showed significant departure from unimodality while
324 were expected by chance alone. Yet, we cannot rule
out the possibility that some of these 175 clones rep-
resent true positives (genes with bi- or multimodal
transcription-level distribution; Figure 1C). In sum-
mary, there was little evidence of significant departure
from normality in transcription profiles, with the vast
majority of the genes showing unimodal distribution.
This suggests that most transcription profiles behaved as
quantitative rather than qualitative traits in this system.
Hence, the high prevalence of major-effect eQTL in
eQTL mapping studies (Gibson and Weir 2005) may
correspond more to a detection bias toward major-effect
eQTL than to a biological fact. However, of the minority

TABLE 2

Results from the simulation-based ANOVA

Gene product P-value
Fold

difference
GenBank

accession no. Functional information

Creatine kinase (EC 2.7.3.2) 9.87 3 10�6 1.66 CK990405 Energy metabolism
Thioredoxin-like protein p19 9.87 3 10�6 0.70 CB498161 Redox regulation, protein refolding,

transcription factors regulation
a-Globin and b-globin 8.00 3 10�5 1.48 CA051720 Oxygen transport
Phosphoglycerate mutase

2 (EC 5.4.2.1)
2.16 3 10�4 1.47 CB497792 Regulation of glycolysis, cell proliferation

Invariant chain INVX 2.65 3 10�4 0.85 CB503772 MHC class II-associated invariant chain
Invariant chain INVX 2.91 3 10�4 0.87 CK990275 MHC class II-associated invariant chain
NADH-ubiquinone oxidoreductase

chain 2 (EC 1.6.5.3)
3.27 3 10�4 1.34 CN442556 Energy metabolism

Nuclease-sensitive element-binding
protein 1

3.28 3 10�4 0.82 CB511419 Transcription factor

Invariant chain S25-7 4.16 3 10�4 0.86 CB513162 MHC class II-associated invariant chain
Invariant chain S25-7 5.04 3 10�4 0.75 CB502487 MHC class II-associated invariant chain
Nucleolar RNA helicase II 5.64 3 10�4 1.46 CB505664 Transcription
Acidic mammalian chitinase

(EC 3.2.1.14)
7.32 3 10�4 1.44 CB505509 Chitin catabolism

cDNA clones representing genes with significant (P , 0.0001) differences in transcription level between the upstream and
downstream subpopulations are presented. The corresponding gene identities, P-values, average fold difference (upstream/down-
stream), and GenBank accessions are provided for each significant cDNA clone, along with brief functional annotations from the
literature.
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of transcripts showing significant departure from either
normality or unimodality (Figure 1C), some might yet
correspond to genes for which transcription depends
on major-effect eQTL.

Gene transcription heritability: Only a handful of
studies have formally estimated the genomewide heri-
tability of gene transcription profiles, and these con-
cerned only model species (mice: Schadt et al. 2003,
Chesler et al. 2005, Cui et al. 2006; humans: Monks et al.
2004; yeast: Brem et al. 2002). Results were quite diverse
as the median h2 among genes with significantly heri-
table transcription profiles ranged from 0.11 (Chesler

et al. 2005) to 0.84 (Brem et al. 2002), whereas the
average h2 among genes with significantly heritable tran-
scription profiles in this study was 0.41. When indicated,
the proportion of genes with significant gene transcrip-
tion h2 in previous studies was�30% (Schadt et al. 2003;
Monks et al. 2004), while it was 16% here. This pro-
portion varies with the statistical power to detect truly
significant h2 and is therefore not formally comparable
between studies. Neither are the average or median
gene transcription h2 among genes with significant tran-
scriptional h2, since they are likely to be inflated when
the power to detect small h2 estimates as significant is
low. Heritability estimation is also highly model de-
pendent. To illustrate this point, we reanalyzed the same
data with a different animal model that did not take
into account the sampling year and maternal effects
(supplemental Figure S2 at http://www.genetics.org/
supplemental/). The proportion of h2 estimates de-
tected as significant rose to 39% (2543), which shows
the importance of choosing an appropriate model (ac-
counting, notably, for maternal effects) to reduce biases
in estimating h2 (Kruuk 2004).

Here, the statistical power to detect significant tran-
scriptional h2 was relatively low, given the low genetic
variance for gene expression in our system. Hence, the
crosses that we used were performed among genitors of
the same subpopulation (one of two small subpopula-
tions). Clearly, then, the additive genetic and phenotypic
variances cannot be expected to be as high here as in
systems where crosses were performed between genitors
of different strains or populations. This low power likely
caused the average h2 estimates among genes with
significant transcription heritability to be higher than
in some previous studies assessing gene transcription h2

(Monks et al. 2004; Chesler et al. 2005). Higher average
h2 estimates may also reflect genuine differences between
species (salmon, mouse, and human) or result from the
different statistical models used. Although our sample
size was small compared to those commonly used when
quantifying heritability for ‘‘classical’’ phenotypic traits, it
still ranks among the highest used to date in any study
that has investigated transcriptional heritability.

While the 1044 genes with significant gene transcrip-
tion h2 estimates do not necessarily represent genes for
which directional selection was evidenced in this study,

they likely represent genes for which levels of transcrip-
tion have a high potential for responding to selection.
Functional analysis showed significant overrepresenta-
tion of gene categories related to oxidative phosphor-
ylation among this group of genes when compared to all
genes represented on the chip. These categories were
not significantly overrepresented in the list of genes that
showed significant differences in gene transcription
between subpopulations (on the basis of ANOVA) or
among the transcriptional QST distribution upper out-
liers. This might suggest that genes from this basic path-
way, although their transcription profiles often appear
heritable, were not particularly involved in the recent
phenotypic divergence between the salmon subpopula-
tions that we studied.

QST estimates and transcriptome scan: As illustrated
from the distribution of transcription profile QST (Fig-
ure 3), transcriptional QST estimates were virtually null
for the great majority of the genes tested. While QST

estimates were expected to be low, given that divergence
between the two subpopulations under study has been
possible only since 1981 (about six generations), tran-
scription-level QST estimates for 97% of the genes with
significant transcriptional h2 were under (in some cases
by orders of magnitude) the FST values (average of 3.2%)
estimated in a previous study based on neutral markers
(Garant et al. 2000). This observation is consistent with
the results of recent studies (Denver et al. 2005; Rifkin

et al. 2005) in which the authors concluded that tran-
scription profiles of a large proportion of all genes
appear to be under the effect of stabilizing selection in
natural systems. However, Beaumont and Balding (2004)
recently used a simulation-based approach to show that
current statistical methods could not accurately identify
loci under balancing or stabilizing selection in a genome
scan framework, especially when populations are weakly
differentiated. Yet, results from Lande’s neutrality test
suggest that, for 1020 (97.7%) of the genes tested, neu-
tral evolution of gene transcription profiles cannot be
rejected. An alternative explanation for the high num-
ber of very small QST estimates in this study could be the
lack of genetic variance for gene transcription profiles
(Merila and Crnokrak 2001), as discussed above.

Conversely, by targeting genes in the upper outliers of
the transcriptional QST distribution, the ‘‘transcriptome
scan’’ approach identified 16 cDNA clones (Table 1)
representing the most likely genes for which transcrip-
tion levels may have diverged between the two subpo-
pulations as a result of directional selection in two
contrasting habitats. Additional evidence for the role of
selection in driving transcriptional divergence for 15 of
those 16 genes (plus 9 others) comes from the results
of Lande’s neutrality test (Table 1). Transcriptional QST

estimates for these genes were high (0.07–0.19, mean¼
0.11), given the short time frame in which divergence is
likely to have occurred between the two subpopulations.
Transcriptional QST estimates for these genes were also
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all above the FST estimated between them using neutral
markers. It is noteworthy that 62% of the genes
identified as outliers have no known function, which
suggests that selection acted on unpredictable targets.
The other candidate genes identified with the tran-
scriptome scan represented various functional groups
(Table 1). Moreover, the differential transcription of
some of these genes could potentially affect gene ex-
pression of other genes at different levels. Hence, the
nucleolar RNA helicase II is a multifunctional protein
that is notably implicated in rRNA biosynthesis and in
the regulation of c-Jun-mediated gene expression (Yang

et al. 2005). Pterin-4-a-carbinolamine dehydratase, apart
from its role in tetrahydrobiopterin biosynthesis, is also
known as a dimerization factor of the hepatocyte nu-
clear factor (HNF) 1 a, one of the master regulators of
hepatocyte and pancreatic islet transcription (Resibois

et al. 1999).
Between-subpopulations ANOVA and comparison

with the results of the transcriptome scan and gene
transcription heritability: The between-subpopulations
ANOVA identified 12 cDNA clones corresponding to
genes for which the transcription level diverged be-
tween subpopulations, albeit apparently not necessarily
through the effect of selection (Table 2). Except for a
nucleolar RNA helicase II-coding gene, none of these
genes overlapped with outliers identified by the tran-
scriptome scan approach, and the null hypothesis of
neutral evolution could not be rejected for any of them
by Lande’s test. Namely, these differences could be the
result of six generations of phenotypic divergence in
different parts of the Sainte-Marguerite River caused by
genetic drift. Yet they still represent genes that poten-
tially differentially affect several physiological functions
between the two subpopulations. Of particular interest
is the gene coding for nucleolar RNA helicase II, which
both was significantly differently transcribed under a
conservative significance threshold and exhibited sub-
stantial genetic variance in gene transcription between
relative to within subpopulation (Tables 1 and 2).

The fact that, except for one gene, there was no
overlap between the results of the transcriptome scan
and those of the ANOVA may seem paradoxical and
therefore deserves explanations. First, the absence of
most of the transcriptome scan candidate genes from
the list of genes showing significant transcription differ-
ences between subpopulations (Table 2) is largely ex-
plained by the stringency of the significance threshold
chosen for the ANOVA. Had we raised this threshold to
0.05, differences in transcription for 12 (75%) genes in
Table 1 would have been significant in the ANOVA
analysis. Moreover, heritability estimates for eight of the
genes harboring the most significant differences in gene
transcription between subpopulations were not signifi-
cant. Hence, these were not considered in the QST

analysis and could therefore not be detected as outliers
in the transcriptome scan. With the exception of nu-

cleolar RNA helicase II, the remaining genes in Table 2
(Y-box transcription factor, invariant chain INVX, and
invariant chain S25-7) had significant gene transcription
h2 and showed highly significantly different expression
profiles between subpopulations. Yet, they had small
transcriptional QST and hence were not identified as
outliers in the transcriptome scan. We propose two
interpretations for this result: Either (1) the transcrip-
tion profiles of these genes evolved neutrally between
subpopulations (e.g., by genetic drift, which might be
supported by the results of Lande’s test) or (2) they
evolved as a consequence of selection but their tran-
scription levels have a nonadditive genetic basis. Indeed,
recent studies have provided clear evidence that a non-
additive genetic basis for gene transcription is common
(Gibson et al. 2004; Auger et al. 2005; Roberge et al.
2008). Here, a possible example of the latter case may be
given by genes related to the MHC, three of which had
significant transcription levels h2 but very low estimated
transcriptionalQST. Interestingly,LandryandBernatchez

(2001) showed that directional selection has been acting
at the antigen presentation sites of the MHC class II B
locus on the subpopulations of this same river. The
coding sequence of MHC class II B coding genes could
have evolved under the effect of selection while the
transcription levels of other MHC-related genes evolved
neutrally. Alternatively, both could have evolved through
selection on traits harboring nonadditive genetic vari-
ance. Another general observation on the comparison
of the results of the ANOVA and transcriptome scan is
that all of the upper outlier genes of the transcriptional
QST distribution were overtranscribed in the upstream
vs. downstream population (Table 1; average fold change:
29%). This was, however, not observed for the genes that
showed significant transcription differences between
the two subpopulations in the ANOVA (Table 2), in
which a similar number of genes were over- and under-
transcribed for a given subpopulation. This raises the
hypothesis that selection may have favored enhanced
general metabolism and gene transcription in the up-
stream subpopulation, which is also characterized by
a higher growth rate and smaller size threshold at
precocious sexual maturation, resulting in a higher pro-
portion of sexually precocious parr relative to the down-
stream subpopulation (Aubin-Horth et al. 2006). Gene
overexpression associated with higher metabolic de-
mands has been observed in other salmonids. For in-
stance, in a study on the transcriptomics of population
divergence involving dwarf and normal whitefish species
pairs (Coregonus sp.), Derome et al. (2006) observed that
higher swimming activity in the dwarf whitefish was
consistently associated with overexpression of genes in-
volved in muscle contraction as well as energymetabolism.

No correlation was observed between the P-values
from the ANOVA comparing the subpopulations, the
estimated gene transcription h2, and the transcriptional
QST estimate for the 1044 genes with significant gene
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transcription h2 (Figure 4), or for all detected genes
(not shown). However, the relationship between tran-
scriptional QST and h2 estimates was marked by a mutual
exclusion: few genes had both high-transcriptional QST

and h2. This may be at least partly explained by the fact
that the animal genetic variance, which we used to
estimate s2

GW, is the numerator of the h2 formula and
also contributes to the denominator of the QST formula.
High within-population genetic variance naturally im-
poses a superior limit to values that QST can reach (see
Hedrick 2005 for analogous arguments regarding FST

estimation). Inversely, very small between-subpopula-
tion genetic variance can result in very high QST esti-
mates for genes with very low within-population genetic
variance, which could represent a technical artifact

inflating QST estimates for a number of genes. Here,
this potential problem was controlled for by considering
only genes with significant h2 estimates for the tran-
scriptome scan. Yet, one could argue that genes with
high gene transcription QST estimates and very low
genetic variance estimates illustrate the erosion of the
within-subpopulation genetic variance as a result of the
action of divergent selection. Although this possibility
cannot be ruled out, we do not deem that this is very
likely considering the short time frame (six genera-
tions) involved in the divergence of the salmon sub-
populations studied here.

To conclude, this study represents, to our knowledge,
the first attempt to translate differences in gene tran-
scription into QST estimates to identify genes for which
transcription levels are potentially under directional
selection and one of the few studies to evaluate tran-
scription-level h2 on a genomewide scale. It thus con-
tributes both empirically and methodologically to the
evolutionary quantitative genetic exploration of tran-
scription data by showing that a combination of QST and
genome scan framework can efficiently identify genes
for which transcription may have evolved under the
effect of directional selection, even at the scale of very
recently diverging subpopulations.
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